Adaptive Control of Nonlinear System Using Neuro-Fuzzy Learning by PSO Algorithm

被引:0
|
作者
Turki, Mourad [1 ]
Bouzaida, Sana [1 ]
Sakly, Anis [1 ]
M'Sahli, Faouzi [1 ]
机构
[1] Natl Sch Engineers Monastir, Res Unit Etud Syst Ind & Energies Renouvelables, Monastir, Tunisia
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper proposes the optimization of parameters of neuro-fuzzy system using the particle swarm optimization. Neuro-fuzzy techniques have emerged from the fusion of neural networks and fuzzy inference systems. They could serve as a powerful tool for system modeling and control. These fuzzy systems are optimized by adapting the antecedent and consequent parameters. Among them, the ANFIS use the least square to optimize the consequent parameters and retropropagation to train the antecedent parameters. Several learning algorithms of fuzzy models have been proposed, e. g. evolutionary algorithms, such as particle swarm optimization. These different methods have been developed to learn the parameters of neuro-fuzzy
引用
收藏
页码:519 / 523
页数:5
相关论文
共 50 条
  • [1] An adaptive learning algorithm for a neuro-fuzzy network
    Bodyanskiy, Yevgeniy
    Kolodyazhniy, Vitaliy
    Stephan, Andreas
    [J]. COMPUTATIONAL INTELLIGENCE: THEORY AND APPLICATIONS, PROCEEDINGS, 2001, 2206 : 68 - 75
  • [2] Modelling and control of a flexible structure using adaptive neuro-fuzzy inference system algorithm
    Darus, IZM
    Tokhi, MO
    Hashim, SZM
    [J]. ICM '04: PROCEEDINGS OF THE IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS 2004, 2004, : 159 - 164
  • [3] Adaptive Neuro-Fuzzy Control with Sliding Mode Learning Algorithm: Application to Antilock Braking System
    Topalov, Andon V.
    Kayacan, Erdal
    Oniz, Yesim
    Kaynak, Okyay
    [J]. ASCC: 2009 7TH ASIAN CONTROL CONFERENCE, VOLS 1-3, 2009, : 784 - 789
  • [4] Nonlinear system control using compensatory neuro-fuzzy networks
    Lin, CJ
    Chen, CH
    [J]. IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2003, E86A (09) : 2309 - 2316
  • [5] FPGA implementation of neuro-fuzzy system with improved PSO learning
    Karakuzu, Cihan
    Karakaya, Fuat
    Cavuslu, Mehmet Ali
    [J]. NEURAL NETWORKS, 2016, 79 : 128 - 140
  • [6] Adaptive swarm behavior acquisition by a neuro-fuzzy system and reinforcement learning algorithm
    Kuremoto, Takashi
    Obayashi, Masanao
    Kobayashi, Kunikazu
    [J]. INTERNATIONAL JOURNAL OF INTELLIGENT COMPUTING AND CYBERNETICS, 2009, 2 (04) : 724 - 744
  • [7] Neuro-fuzzy control of antilock braking system using sliding mode incremental learning algorithm
    Topalov, Andon V.
    Oniz, Yesim
    Kayacan, Erdal
    Kaynak, Okyay
    [J]. NEUROCOMPUTING, 2011, 74 (11) : 1883 - 1893
  • [8] Adaptive neuro-fuzzy inference system for modelling and control
    Amaral, TGB
    Crisóstomo, MM
    Pires, VF
    [J]. 2002 FIRST INTERNATIONAL IEEE SYMPOSIUM INTELLIGENT SYSTEMS, VOL 1, PROCEEDINGS, 2002, : 67 - 72
  • [9] An adaptive neuro-fuzzy approach for modeling and control of nonlinear systems
    Ahtiwash, OM
    Abdulmuin, MZ
    [J]. COMPUTATIONAL SCIENCE -- ICCS 2001, PROCEEDINGS PT 2, 2001, 2074 : 198 - 207
  • [10] A Divide-and-Conquer Strategy for Adaptive Neuro-Fuzzy Inference System Learning Using Metaheuristic Algorithm
    Salleh, Mohd Najib Mohd
    Hussain, Kashif
    Talpur, Noreen
    [J]. INTELLIGENT AND INTERACTIVE COMPUTING, 2019, 67 : 205 - 214