Improving the performance of solar flare prediction using active longitudes information

被引:28
|
作者
Huang, X. [1 ]
Zhang, L. [1 ,2 ]
Wang, H. [1 ]
Li, L. [1 ]
机构
[1] Chinese Acad Sci, Natl Astron Observ, Key Lab Solar Act, Beijing, Peoples R China
[2] Univ Oulu, Dept Phys, Oulu, Finland
基金
中国国家自然科学基金;
关键词
Sun: flares; Sun: activity; Sun: magnetic topology; MAGNETIC-FIELD PROPERTIES; MICHELSON DOPPLER IMAGER; FORECASTING METHODS; SINGULAR POINTS; SUNSPOT GROUPS; LARGE-SCALE; REGIONS; CLASSIFICATION; MAGNETOGRAMS; SAMPLE;
D O I
10.1051/0004-6361/201219742
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Context. Solar flare prediction models normally depend on properties of active regions, such as sunspot area, McIntosh classifications, Mount Wilson classifications, and various measures of the magnetic field. Nevertheless, the positional information of active regions has not been used. Aims. We define a metric, DARAL (distance between active regions and predicted active longitudes), to depict the positional relationship between active regions and predicted active longitudes and add DARAL to our solar flare prediction model to improve its performance. Methods. Combining DARAL with other solar magnetic field parameters, we build a solar flare prediction model with the instance-based learning method, which is a simple and effective algorithm in machine learning. We extracted 70 078 active region instances from the Solar and Heliospheric Observatory (SOHO)/Michelson Doppler Imager (MDI) magnetograms containing 1055 National Oceanic and Atmospheric Administration (NOAA) active regions within 30 degrees of the solar disk center from 1996 to 2007 and used them to train and test the solar flare prediction model. Results. Using four performance measures (true positive rate, true negative rate, true skill statistic, and Heidke skill score), we compare performances of the solar flare prediction model with and without DARAL. True positive rate, true negative rate, true skill statistic, and Heidke skill score increase by 6.7% +/- 1.3%, 4.2% +/- 0.5%, 10.8% +/- 1.4% and 8.7% +/- 1.0%, respectively. Conclusions. The comparison indicates that the metric DARAL is beneficial to performances of the solar flare prediction model.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Improving the performance of solar flare prediction using active longitudes information
    Key Laboratory of Solar Activity, National Astronomical Observatories of Chinese Academy of Sciences, Beijing, China
    不详
    [J]. Astron. Astrophys., 2013,
  • [2] Prediction of solar active longitudes
    Zhang, L. Y.
    Wang, H. N.
    Du, Z. L.
    [J]. ASTRONOMY & ASTROPHYSICS, 2008, 484 (02) : 523 - 527
  • [3] BARTELS ACTIVE LONGITUDES SECTOR BOUNDARIES AND FLARE ACTIVITY
    BUMBA, V
    OBRIDKO, VN
    [J]. SOLAR PHYSICS, 1969, 6 (01) : 104 - &
  • [4] Active longitudes in minima of solar activity
    I. G. Kostuchenko
    E. E. Benevolenskaya
    [J]. Geomagnetism and Aeronomy, 2014, 54 : 1019 - 1025
  • [5] Active Longitudes at the Solar Cycle Maxima
    A. P. Kramynin
    F. A. Mikhalina
    [J]. Geomagnetism and Aeronomy, 2021, 61 : 937 - 939
  • [6] Active Longitudes at the Solar Cycle Maxima
    Kramynin, A. P.
    Mikhalina, F. A.
    [J]. GEOMAGNETISM AND AERONOMY, 2021, 61 (07) : 937 - 939
  • [7] Active longitudes in minima of solar activity
    Kostuchenko, I. G.
    Benevolenskaya, E. E.
    [J]. GEOMAGNETISM AND AERONOMY, 2014, 54 (08) : 1019 - 1025
  • [8] Solar flare prediction and magnetic field evolution in solar active region
    Wang, HN
    Zhang, GQ
    Zhu, CL
    Sun, JL
    [J]. HIGHLIGHTS OF ASTRONOMY, VOL 12, 2002, 12 : 396 - 397
  • [9] Improving Solar Flare Prediction by Time Series Outlier Detection
    Wen, Junzhi
    Islam, Md Reazul
    Ahmadzadeh, Azim
    Angryk, Rafal A.
    [J]. ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, ICAISC 2022, PT II, 2023, 13589 : 152 - 164
  • [10] Operational solar flare prediction model using Deep Flare Net
    Nishizuka, Naoto
    Kubo, Yuki
    Sugiura, Komei
    Den, Mitsue
    Ishii, Mamoru
    [J]. EARTH PLANETS AND SPACE, 2021, 73 (01):