Posterior asymptotics of nonparametric location-scale mixtures for multivariate density estimation

被引:14
|
作者
Canale, Antonio [1 ]
De Blasi, Pierpaolo
机构
[1] Univ Turin, Dept Econ & Stat, Turin, Italy
基金
欧洲研究理事会;
关键词
Bayesian nonparametrics; density estimation; Dirichlet mixture; factor model; posterior asymptotics; sparse random eigenmatrices; DIRICHLET MIXTURES; CONVERGENCE-RATES; CONSISTENCY; DISTRIBUTIONS; PRIORS;
D O I
10.3150/15-BEJ746
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Density estimation represents one of the most successful applications of Bayesian nonparametrics. In particular, Dirichlet process mixtures of normals are the gold standard for density estimation and their asymptotic properties have been studied extensively, especially in the univariate case. However, a gap between practitioners and the current theoretical literature is present. So far, posterior asymptotic results in the multivariate case are available only for location mixtures of Gaussian kernels with independent prior on the common covariance matrix, while in practice as well as from a conceptual point of view a location-scale mixture is often preferable. In this paper, we address posterior consistency for such general mixture models by adapting a convergence rate result which combines the usual low-entropy, high-mass sieve approach with a suitable summability condition. Specifically, we establish consistency for Dirichlet process mixtures of Gaussian kernels with various prior specifications on the covariance matrix. Posterior convergence rates are also discussed.
引用
收藏
页码:379 / 404
页数:26
相关论文
共 50 条
  • [1] Adaptive Bayesian density estimation with location-scale mixtures
    Kruijer, Willem
    Rousseau, Judith
    van der Vaart, Aad
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2010, 4 : 1225 - 1257
  • [2] Frontier estimation in nonparametric location-scale models
    Florens, Jean-Pierre
    Simar, Leopold
    Van Keilegom, Ingrid
    [J]. JOURNAL OF ECONOMETRICS, 2014, 178 : 456 - 470
  • [3] A CLASS OF MULTISAMPLE MULTIVARIATE NONPARAMETRIC-TESTS FOR LOCATION-SCALE
    DURAN, BS
    MITCHELL, CC
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1989, 18 (01) : 67 - 84
  • [4] Nonparametric identification and estimation of a censored location-scale regression model
    Chen, SN
    Dahl, GB
    Khan, S
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2005, 100 (469) : 212 - 221
  • [5] A Smooth Nonparametric, Multivariate, Mixed-Data Location-Scale Test
    Racine, Jeffrey S.
    Van Keilegom, Ingrid
    [J]. JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2020, 38 (04) : 784 - 795
  • [6] Estimation in nonparametric location-scale regression models with censored data
    Cédric Heuchenne
    Ingrid Van Keilegom
    [J]. Annals of the Institute of Statistical Mathematics, 2010, 62 : 439 - 463
  • [7] Nonparametric multivariate density estimation using mixtures
    Wang, Xuxu
    Wang, Yong
    [J]. STATISTICS AND COMPUTING, 2015, 25 (02) : 349 - 364
  • [8] Nonparametric multivariate density estimation using mixtures
    Xuxu Wang
    Yong Wang
    [J]. Statistics and Computing, 2015, 25 : 349 - 364
  • [9] Estimation in nonparametric location-scale regression models with censored data
    Heuchenne, Cedric
    Van Keilegom, Ingrid
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2010, 62 (03) : 439 - 463
  • [10] CLASS OF LOCATION-SCALE NONPARAMETRIC TESTS
    DURAN, BS
    TSAI, WS
    LEWIS, TO
    [J]. BIOMETRIKA, 1976, 63 (01) : 173 - 176