Kink scaling functions in 2D non-integrable quantum field theories

被引:17
|
作者
Mussardo, G
Riva, V
Sotkov, G
Delfino, G
机构
[1] Univ Oxford, Rudolf Peierls Ctr Theoret Phys, Oxford OX1 3NP, England
[2] Scuola Int Super Studi Avanzati, I-34100 Trieste, Italy
[3] Ist Nazl Fis Nucl, Sez Trieste, Trieste, Italy
[4] Univ Oxford Wolfson Coll, Oxford OX2 6UD, England
[5] Univ Fed Espirito Santo, Dept Fis, BR-29060900 Vitoria, Espirito Santo, Brazil
基金
英国工程与自然科学研究理事会;
关键词
semiclassical quantization; kink solutions in finite volume; scaling functions; conformal field theory;
D O I
10.1016/j.nuclphysb.2005.12.008
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We determine the semiclassical energy levels for the phi(4) field theory in the broken symmetry phase on a 2D cylindrical geometry with antiperiodic boundary conditions by quantizing the appropriate finite-volume kink solutions. The analytic form of the kink scaling functions for arbitrary size of the system allows us to describe the flow between the twisted sector of c = 1 CFF in the UV region and the massive particles in the IR limit. Kink-creating operators are shown to correspond in the UV limit to disorder fields of the c = 1 CFT. The problem of the finite-volume spectrum for generic 2D Landau-Ginzburg models is also discussed. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:259 / 287
页数:29
相关论文
共 50 条
  • [1] Kinks and Particles in Non-integrable Quantum Field Theories
    Mussardo, Giuseppe
    [J]. NEW TRENDS IN MATHEMATICAL PHYSICS, 2009, : 509 - 523
  • [2] Non-integrable quantum field theories as perturbations of certain integrable models
    Delfino, G
    Mussardo, G
    Simonetti, P
    [J]. NUCLEAR PHYSICS B, 1996, 473 (03) : 469 - 508
  • [3] Effective potentials and kink spectra in non-integrable perturbed conformal field theories
    Mussardo, G.
    Takacs, G.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (30)
  • [4] Noncommutative integrable field theories in 2d
    Cabrera-Camero, I
    Moriconi, M
    [J]. NUCLEAR PHYSICS B, 2003, 673 (03) : 437 - 454
  • [5] SCALING LIMITS OF INTEGRABLE QUANTUM FIELD THEORIES
    Bostelmann, Henning
    Lechner, Gandalf
    Morsella, Gerardo
    [J]. REVIEWS IN MATHEMATICAL PHYSICS, 2011, 23 (10) : 1115 - 1156
  • [6] A topological invariant of RF flows in 2D integrable quantum field theories
    Caracciolo, R
    Gliozzi, F
    Tateo, R
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1999, 13 (24-25): : 2927 - 2932
  • [7] QUANTUM DYNAMICS IN CLASSICALLY INTEGRABLE AND NON-INTEGRABLE REGIONS
    DAVIS, MJ
    STECHEL, EB
    HELLER, EJ
    [J]. CHEMICAL PHYSICS LETTERS, 1980, 76 (01) : 21 - 26
  • [8] Non-integrable lattice equations supporting kink and soliton solutions
    Common, AK
    Musette, M
    [J]. EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2001, 12 : 709 - 718
  • [9] 2D Galilean field theories with anisotropic scaling
    Chen, Bin
    Hao, Peng-Xiang
    Yu, Zhe-fei
    [J]. PHYSICAL REVIEW D, 2020, 101 (06)
  • [10] Non-integrable dimer models: Universality and scaling relations
    Giuliani, Alessandro
    Toninelli, Fabio Lucio
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (10)