A Probabilistic Model for User Relevance Feedback on Image Retrieval

被引:0
|
作者
Paredes, Roberto [1 ]
Deselaers, Thornas [2 ]
Vidal, Enrique [1 ]
机构
[1] Univ Politecn Valencia, Inst Informat Technol, Pattern Recognit & Human Language Technol Grp, Valencia, Spain
[2] Rhein Westfal TH Aachen, Dept Comp Sci, Human Language Technol & Pattern Recognit Grp, Aachen, Germany
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a novel probabilistic model for user interaction in image retrieval applications which accounts for consistency among the retrieved images and considers the. distribution of images in the database which is searched for, Common models for relevance feedback do not consider this and thus do riot incorporate all available information. The proposed method is evaluated on two publicly available benchmark databases and clearly outperforms recent competitive methods.
引用
收藏
页码:260 / +
页数:3
相关论文
共 50 条
  • [1] Relevance feedback in conceptual image retrieval: a user evaluation
    Torres, Jose
    Reis, Luis Paulo
    [J]. ACTAS DA 1A CONFERENCIA IBERICA DE SISTEMAS E TECNOLOGIAS DE INFORMACAO, VOL II, 2006, : 755 - 770
  • [2] An exploration of diversified user strategies for image retrieval with relevance feedback
    Crucianu, Michel
    Tarel, Jean-Philippe
    Ferecatu, Marin
    [J]. JOURNAL OF VISUAL LANGUAGES AND COMPUTING, 2008, 19 (06): : 629 - 636
  • [3] Information embedding based on user's relevance feedback for image retrieval
    Lee, CS
    Ma, WY
    Zhang, HJ
    [J]. MULTIMEDIA STORAGE AND ARCHIVING SYSTEMS IV, 1999, 3846 : 294 - 304
  • [4] Gaussian mixture model for Relevance Feedback in image retrieval
    Qian, F
    Li, MJ
    Zhang, L
    Zhang, HJ
    Zhang, B
    [J]. IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, VOL I AND II, PROCEEDINGS, 2002, : 229 - 232
  • [5] A Bayesian network model for relevance feedback in image retrieval
    Xin, J
    Jin, JS
    Shao, X
    [J]. Proceedings of the Eighth IASTED International Conference on Internet and Multimedia Systems and Applications, 2004, : 85 - 90
  • [6] A query model with relevance feedback for image database retrieval
    Gonzalez, Sahudy Montenegro
    Yamakami, Akebo
    [J]. 2006 3RD INTERNATIONAL IEEE CONFERENCE INTELLIGENT SYSTEMS, VOLS 1 AND 2, 2006, : 85 - 90
  • [7] Image Retrieval with relevance feedback
    Fang, L
    Hock, AY
    [J]. 29TH APPLIED IMAGERY PATTERN RECOGNITION WORKSHOP, PROCEEDINGS, 2000, : 85 - 91
  • [8] An image retrieval method based on information filtering of user relevance feedback records
    Zhou, XD
    Zhang, Q
    Liu, L
    Deng, AL
    Zhang, L
    Shi, BL
    [J]. ADVANCES IN WEB-AGE INFORMATION MANAGEMENT, PROCEEDINGS, 2003, 2762 : 421 - 432
  • [9] Query modification from user relevance feedback by multiple alignment for image retrieval
    Wu, Tian-Luu
    Cheng, Shyi-Chyi
    Pan, Shan-Cheng
    Hung, Wei-Chih
    [J]. IMECS 2007: INTERNATIONAL MULTICONFERENCE OF ENGINEERS AND COMPUTER SCIENTISTS, VOLS I AND II, 2007, : 1812 - +
  • [10] Learning a semantic space from user's relevance feedback for image retrieval
    He, XF
    King, O
    Ma, WY
    Li, MJ
    Zhang, HJ
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2003, 13 (01) : 39 - 48