Brownian motion and parabolic Anderson model in a renormalized Poisson potential

被引:6
|
作者
Chen, Xia [1 ]
Kulik, Alexey M. [2 ]
机构
[1] Univ Tennessee, Dept Math, Knoxville, TN 37996 USA
[2] Ukrainian Natl Acad Sci, Inst Math, UA-01601 Kiev, Ukraine
关键词
Renormalization; Poisson field; Brownian motion in Poisson potential; Parabolic Anderson model; Newton's law of universal attraction; INFINITELY DIVISIBLE PROCESSES; SCHRODINGER-OPERATORS; ASYMPTOTICS; INTERMITTENCY; DEVIATIONS;
D O I
10.1214/11-AIHP419
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A method known as renormalization is proposed for constructing some more physically realistic random potentials in a Poisson cloud. The Brownian motion in the renormalized random potential and related parabolic Anderson models are modeled. With the renormalization, for example, the models consistent to Newton's law of universal attraction can be rigorously constructed.
引用
下载
收藏
页码:631 / 660
页数:30
相关论文
共 50 条
  • [1] QUENCHED ASYMPTOTICS FOR BROWNIAN MOTION OF RENORMALIZED POISSON POTENTIAL AND FOR THE RELATED PARABOLIC ANDERSON MODELS
    Chen, Xia
    ANNALS OF PROBABILITY, 2012, 40 (04): : 1436 - 1482
  • [2] Brownian motion in attenuated or renormalized inverse-square Poisson potential
    Nelson, Peter
    dos Santos, Renato Soares
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2020, 56 (01): : 1 - 35
  • [3] Mild solution to parabolic Anderson model in Gaussian and Poisson potential
    Han, Yuecai
    Zhang, Liwei
    JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (10)
  • [4] Annealed Asymptotics for Brownian Motion of Renormalized Potential in Mobile Random Medium
    Xia Chen
    Jie Xiong
    Journal of Theoretical Probability, 2015, 28 : 1601 - 1650
  • [5] Annealed Asymptotics for Brownian Motion of Renormalized Potential in Mobile Random Medium
    Chen, Xia
    Xiong, Jie
    JOURNAL OF THEORETICAL PROBABILITY, 2015, 28 (04) : 1601 - 1650
  • [6] MOMENT ESTIMATES FOR SOME RENORMALIZED PARABOLIC ANDERSON MODELS
    Chen, Xia
    Deya, Aurelien
    Ouyang, Cheng
    Tindel, Samy
    ANNALS OF PROBABILITY, 2021, 49 (05): : 2599 - 2636
  • [7] Potential confinement property of the parabolic Anderson model
    Grueninger, Gabriela
    Koenig, Wolfgang
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2009, 45 (03): : 840 - 863
  • [8] Renormalized stochastic calculus of variations for a renormalized infinite-dimensional Brownian motion
    Cruzeiro, Ana Bela
    Malliavin, Paul
    STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2009, 81 (3-4) : 385 - 399
  • [9] A stochastic parabolic model of MEMS driven by fractional Brownian motion
    Ourania Drosinou
    Christos V. Nikolopoulos
    Anastasios Matzavinos
    Nikos I. Kavallaris
    Journal of Mathematical Biology, 2023, 86
  • [10] LOCALISATION AND AGEING IN THE PARABOLIC ANDERSON MODEL WITH WEIBULL POTENTIAL
    Sidorova, Nadia
    Twarowski, Aleksander
    ANNALS OF PROBABILITY, 2014, 42 (04): : 1666 - 1698