Prediction of soil texture distributions using VNIR-SWIR reflectance spectroscopy

被引:67
|
作者
Curcio, D. [1 ]
Ciraolo, G. [2 ]
D'Asaro, F. [1 ]
Minacapilli, M. [1 ]
机构
[1] Univ Palermo, Dipartimento Sci Agr & Forestali SAF, I-90133 Palermo, Italy
[2] Univ Palermo, Dipartimento Ingn Civile Ambientale Aerosp Mat DI, I-90133 Palermo, Italy
关键词
Soil texture. Reflectance spectroscopy; Continuum Removal; Partial Least Squares Regression; CONTINUUM REMOVAL; CLAY; PLSR;
D O I
10.1016/j.proenv.2013.06.056
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Reflectance spectroscopy provides an alternate method to non-destructively characterize key soil properties. Different approaches, including chemometrics techniques or specific absorption features, have been proposed to estimate soil properties from visible and near-infrared (VNIR, 400-1200 nm) and shortwave infrared (SWIR, 1200-2500 urn) reflectance domains. The main goal of this study was to test the performance of two distinct methods for soil texture estimation by VNIR-SWIR reflectance measurements: the Continuum Removal (CR) technique that was used to correlate specific spectral absorption features with clay, silt and sand content, and ii) the Partial Least-Squares Regression (PLSR) method, which is a classical statistical multivariate technique, that uses the full-spectrum data. At this aim, the surface reflectance of 100 soil samples collected from different sites in Sicily and coveting a wide range of textures were measured in laboratory using an ASD FieldSpec Pro spectroradiometer (350-2500 nm). The results of our work indicated that the PLSR technique performed better than the CR approach. Particularly, the assessment of soil texture accuracy performed using root mean squared error (RMSE) and coefficient of determination (R-2) showed that the CR approach allowed to obtain a moderate prediction only for the clay texture fraction. Differently, using PLSR technique, the levels of accuracy resulted high for the clay fraction (RMSE=5.8%, R-2=0.87) and satisfactory for the sand (RMSE=7.7%, R-2=0.80) and silt fractions (RMSE=7.2%, R-2=0.60). Moreover the use of PLSR technique allowed to establish the "key wavelengths" of the investigated spectrum range that should be considered "essential" for the prediction of soil textures, suggesting the optimal settings for airborne or satellite sensors usable in the future for accurate mapping of soil textures. (C) 2013 The Authors. Published by Elsevier B.V
引用
收藏
页码:494 / 503
页数:10
相关论文
共 50 条
  • [1] Logistic splicing correction for VNIR-SWIR reflectance imaging spectroscopy
    Grillini, Federico
    Thomas, Jean-Baptiste
    George, Sony
    [J]. OPTICS LETTERS, 2023, 48 (02) : 403 - 406
  • [2] IDENTIFYING INDUSTRIAL PROCESSES THROUGH VNIR-SWIR REFLECTANCE SPECTROSCOPY OF THEIR WASTE MATERIALS
    Lothode, Maiwenn
    Carrere, Veronique
    Marion, Rodolphe
    [J]. 2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014,
  • [3] Using autoencoders to compress soil VNIR-SWIR spectra for more robust prediction of soil properties
    Tsimpouris, Evangelos
    Tsakiridis, Nikolaos L.
    Theocharis, John B.
    [J]. GEODERMA, 2021, 393
  • [4] Advantages of first-derivative reflectance spectroscopy in the VNIR-SWIR for the quantification of olivine and hematite
    Bou-Orm, Nadine
    AlRomaithi, Amna Abdulrahman
    Elrmeithi, Mariam
    Ali, Fatima Mohammad
    Nazzal, Yousef
    Howari, Fares M.
    Al Aydaroos, Fatima
    [J]. PLANETARY AND SPACE SCIENCE, 2020, 188
  • [5] Characterization of clay minerals and Fe oxides through diffuse reflectance spectroscopy (VNIR-SWIR)
    Bascones, A.
    Suarez, M.
    Ferrer-Julia, M.
    Garcia-Melendez, E.
    Colmenero-Hidalgo, E.
    Quiros, A.
    [J]. REVISTA DE TELEDETECCION, 2020, (55): : 49 - 57
  • [6] Porosity, strength, and alteration - Towards a new volcano stability assessment tool using VNIR-SWIR reflectance spectroscopy
    Kereszturi, Gabor
    Heap, Michael
    Schaefer, Lauren N.
    Darmawan, Herlan
    Deegan, Frances M.
    Kennedy, Ben
    Komorowski, Jean-Christophe
    Mead, Stuart
    Rosas-Carbajal, Marina
    Ryan, Amy
    Troll, Valentin R.
    Villeneuve, Marlene
    Walter, Thomas R.
    [J]. EARTH AND PLANETARY SCIENCE LETTERS, 2023, 602
  • [7] Soil organic carbon estimation using VNIR-SWIR spectroscopy: The effect of multiple sensors and scanning conditions
    Gholizadeh, Asa
    Neumann, Carsten
    Chabrillat, Sabine
    van Wesemael, Bas
    Castaldi, Fabio
    Boruvka, Lubos
    Sanderman, Jonathan
    Klement, Ales
    Hohmann, Christian
    [J]. SOIL & TILLAGE RESEARCH, 2021, 211
  • [8] Relationship between reflectance and degree of polarization in the VNIR-SWIR: A case study on art paintings with polarimetric reflectance imaging spectroscopy
    Grillini, Federico
    Aksas, Lyes
    Lapray, Pierre-Jean
    Foulonneau, Alban
    Thomas, Jean-Baptiste
    George, Sony
    Bigue, Laurent
    [J]. PLOS ONE, 2024, 19 (05):
  • [9] Classification of soybean groups for grain yield and industrial traits using Vnir-Swir spectroscopy
    Santana, Dthenifer Cordeiro
    Seron, Ana Carina Candido
    Teodoro, Larissa Pereira Ribeiro
    de Oliveira, Izabela Cristina
    da Silva Junior, Carlos Antonio
    Baio, Fabio Henrique Rojo
    Itavo, Camila Celeste Branda Ferreira
    Itavo, Luis Carlos Vinhas
    Teodoro, Paulo Eduardo
    [J]. INFRARED PHYSICS & TECHNOLOGY, 2024, 139
  • [10] Advances on Exploration Indicators of Mineral VNIR-SWIR Spectroscopy and Chemistry: A Review
    Zhou, Yan
    Wang, Tiangang
    Fan, Feipeng
    Chen, Shizhong
    Guo, Weimin
    Xing, Guangfu
    Sun, Jiandong
    Xiao, Fan
    [J]. MINERALS, 2022, 12 (08)