Segmentation of corpus callosum using diffusion tensor imaging: validation in patients with glioblastoma

被引:17
|
作者
Nazem-Zadeh, Mohammad-Reza [1 ,2 ,3 ]
Saksena, Sona [4 ]
Babajani-Fermi, Abbas [4 ,5 ]
Jiang, Quan [3 ]
Soltanian-Zadeh, Hamid [1 ,4 ,6 ]
Rosenblum, Mark [5 ]
Mikkelsen, Tom [7 ]
Jain, Rajan [4 ,7 ]
机构
[1] Univ Tehran, Sch Elect & Comp Engn, Control & Intelligent Proc Ctr Excellence, Tehran 14399, Iran
[2] Univ Michigan, Dept Radiat Oncol & Radiol, Ann Arbor, MI 48109 USA
[3] Henry Ford Hlth Syst, Dept Neurol, Detroit, MI 48202 USA
[4] Henry Ford Hlth Syst, Dept Radiol, Detroit, MI 48202 USA
[5] Washington Univ, Sch Med, Mallinckrodt Inst Radiol, St Louis, MO 63110 USA
[6] Wayne State Univ, Dept Radiol, Detroit, MI 48202 USA
[7] Henry Ford Hlth Syst, Dept Neurosurg, Detroit, MI 48202 USA
来源
BMC MEDICAL IMAGING | 2012年 / 12卷
关键词
Corpus callosum; Fiber bundle segmentation; Level-set; Glioblastoma; Diffusion tensor imaging; LEVEL SET; MRI; MICROSTRUCTURE; FRAMEWORK; FIELD;
D O I
10.1186/1471-2342-12-10
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Background: This paper presents a three-dimensional (3D) method for segmenting corpus callosum in normal subjects and brain cancer patients with glioblastoma. Methods: Nineteen patients with histologically confirmed treatment naive glioblastoma and eleven normal control subjects underwent DTI on a 3T scanner. Based on the information inherent in diffusion tensors, a similarity measure was proposed and used in the proposed algorithm. In this algorithm, diffusion pattern of corpus callosum was used as prior information. Subsequently, corpus callosum was automatically divided into Witelson subdivisions. We simulated the potential rotation of corpus callosum under tumor pressure and studied the reproducibility of the proposed segmentation method in such cases. Results: Dice coefficients, estimated to compare automatic and manual segmentation results for Witelson subdivisions, ranged from 94% to 98% for control subjects and from 81% to 95% for tumor patients, illustrating closeness of automatic and manual segmentations. Studying the effect of corpus callosum rotation by different Euler angles showed that although segmentation results were more sensitive to azimuth and elevation than skew, rotations caused by brain tumors do not have major effects on the segmentation results. Conclusions: The proposed method and similarity measure segment corpus callosum by propagating a hypersurface inside the structure (resulting in high sensitivity), without penetrating into neighboring fiber bundles (resulting in high specificity).
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Segmentation of corpus callosum using diffusion tensor imaging: validation in patients with glioblastoma
    Mohammad-Reza Nazem-Zadeh
    Sona Saksena
    Abbas Babajani-Fermi
    Quan Jiang
    Hamid Soltanian-Zadeh
    Mark Rosenblum
    Tom Mikkelsen
    Rajan Jain
    BMC Medical Imaging, 12
  • [2] Segmentation of the Canine Corpus Callosum Using Diffusion-Tensor Imaging Tractography
    Pierce, Theodore T.
    Calabrese, Evan
    White, Leonard E.
    Chen, Steven D.
    Platt, Simon R.
    Provenzale, James M.
    AMERICAN JOURNAL OF ROENTGENOLOGY, 2014, 202 (01) : W19 - W25
  • [3] Automated segmentation of the canine corpus callosum for the measurement of diffusion tensor imaging
    Peterson, David E.
    Chen, Steven D.
    Calabrese, Evan
    White, Leonard E.
    Provenzale, James M.
    NEURORADIOLOGY JOURNAL, 2016, 29 (01): : 4 - 12
  • [4] Diffusion tensor imaging of the corpus callosum in Autism
    Alexander, Andrew L.
    Lee, Jee Eun
    Lazar, Mariana
    Boudos, Rebecca
    DuBray, Molly B.
    Oakes, Terrence R.
    Miller, Judith N.
    Lu, Jeffrey
    Jeong, Eun-Kee
    McMahon, William M.
    Bigler, Erin D.
    Lainhart, Janet E.
    NEUROIMAGE, 2007, 34 (01) : 61 - 73
  • [5] Diffusion tensor imaging of the corpus callosum in addiction
    Arnone, Danilo
    Abou-Saleh, Mohammed T.
    Barrick, Thomas R.
    NEUROPSYCHOBIOLOGY, 2006, 54 (02) : 107 - 113
  • [6] Detection of occult neoplastic infiltration in the corpus callosum and prediction of overall survival in patients with glioblastoma using diffusion tensor imaging
    Mohan, Suyash
    Wang, Sumei
    Cohan, Gokcen
    Kural, Feride
    Chawla, Sanjeev
    O'Rourke, Donald M.
    Poptani, Harish
    EUROPEAN JOURNAL OF RADIOLOGY, 2019, 112 : 106 - 111
  • [7] Detecting glioma invasion of the corpus callosum using diffusion tensor imaging
    Price, SJ
    Peña, A
    Burnet, NG
    Pickard, JD
    Gillard, JH
    BRITISH JOURNAL OF NEUROSURGERY, 2004, 18 (04) : 391 - 395
  • [8] A diffusion tensor imaging study of the corpus callosum in schizophrenia
    Frumin, M
    Westin, CF
    Maier, S
    Kubicki, M
    Kikinis, R
    Jolesz, F
    McCarley, RW
    Shenton, ME
    BIOLOGICAL PSYCHIATRY, 2002, 51 (08) : 139S - 139S
  • [9] Corpus Callosum 2D Segmentation on Diffusion Tensor Imaging Using Growing Neural Gas Network
    Cover, Giovana S.
    Herrera, William G.
    Bento, Mariana P.
    Rittner, Leticia
    VIPIMAGE 2017, 2018, 27 : 208 - 216
  • [10] Structural integrity of corpus callosum in patients with migraine: a diffusion tensor imaging study
    Pak, Aygul Tantik
    Dogan, Sebahat Nacar
    Sengul, Yildizhan
    ACTA NEUROLOGICA BELGICA, 2023, 123 (02) : 385 - 390