An empirical depth function for multivariate data

被引:1
|
作者
Tsao, Min [1 ]
机构
[1] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3R4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Statistical depth function; Empirical likelihood; Mahalanobis depth; LIKELIHOOD;
D O I
10.1016/j.spl.2012.09.007
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We introduce an empirical depth function for multivariate data based on the empirical likelihood ratio for the mean. This empirical depth function is defined through the empirical distribution of a sample. It is centred on the sample mean and has continuous, smooth and convex contours which capture the shape of the data points. We also show that there is an asymptotic equivalence between the empirical depth and the Mahalanobis depth. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:213 / 218
页数:6
相关论文
共 50 条
  • [1] Multivariate analysis by data depth - Rejoinder
    Liu, RY
    Singh, K
    [J]. ANNALS OF STATISTICS, 1999, 27 (03): : 854 - 858
  • [2] Depth Measures for Multivariate Functional Data
    Ieva, Francesca
    Paganoni, Anna M.
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2013, 42 (07) : 1265 - 1276
  • [3] Multivariate analysis by data depth - Discussion
    Hettmansperger, TP
    Oja, H
    Visuri, S
    [J]. ANNALS OF STATISTICS, 1999, 27 (03): : 845 - 854
  • [4] Spherical data depth and a multivariate median
    Elmore, Ryan T.
    Hettmansperger, Thomas P.
    Xuan, Fengjuan
    [J]. Data Depth: Robust Multivariate Analysis, Computational Geometry and Applications, 2006, 72 : 87 - 101
  • [5] Simplicial band depth for multivariate functional data
    Lopez-Pintado, Sara
    Sun, Ying
    Lin, Juan K.
    Genton, Marc G.
    [J]. ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2014, 8 (03) : 321 - 338
  • [6] Data depth, random simplices and multivariate dispersion
    Romanazzi, Mario
    [J]. STATISTICS & PROBABILITY LETTERS, 2009, 79 (12) : 1473 - 1479
  • [7] Simplicial band depth for multivariate functional data
    Sara López-Pintado
    Ying Sun
    Juan K. Lin
    Marc G. Genton
    [J]. Advances in Data Analysis and Classification, 2014, 8 : 321 - 338
  • [8] Generalized and robustified empirical depths for multivariate data
    Liu, Xiaohui
    Rahman, Jafer
    Luo, Shihua
    [J]. STATISTICS & PROBABILITY LETTERS, 2019, 146 : 70 - 79
  • [9] Empirical geometry of multivariate data: A deconvolution approach
    Koltchinskii, VI
    [J]. ANNALS OF STATISTICS, 2000, 28 (02): : 591 - 629
  • [10] A nonparametric multivariate multisample test based on data depth
    Chenouri, Shojaeddin
    Small, Christopher G.
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2012, 6 : 760 - 782