The Carbon Switch at the Level of Pyruvate and Phosphoenolpyruvate in Sulfolobus solfataricus P2

被引:7
|
作者
Haferkamp, Patrick [1 ]
Tjaden, Britta [1 ]
Shen, Lu [1 ]
Brasen, Christopher [1 ]
Kouril, Theresa [1 ,2 ]
Siebers, Bettina [1 ]
机构
[1] Univ Duisburg Essen, Fac Chem, Ctr Water & Environm Res, Mol Enzyme Technol & Biochem,Biofilm Ctr, Essen, Germany
[2] Univ Stellenbosch, Dept Biochem, Stellenbosch, South Africa
来源
FRONTIERS IN MICROBIOLOGY | 2019年 / 10卷
关键词
Archaea; (hyper)thermoacidophile; Sulfolobus solfataricus; pyruvate kinase; phosphoenolpyruvate synthetase; carbon switch; GLYCERALDEHYDE-3-PHOSPHATE FERREDOXIN OXIDOREDUCTASE; CRENARCHAEOTE THERMOPROTEUS-TENAX; CENTRAL CARBOHYDRATE-METABOLISM; SWIVELING-DOMAIN MECHANISM; PYROBACULUM-AEROPHILUM; HYPERTHERMOPHILIC ARCHAEA; PHOSPHATE DIKINASE; PATHWAYS; KINASE; ENZYMES;
D O I
10.3389/fmicb.2019.00757
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Sulfolobus solfataricus P2 grows on different carbohydrates as well as alcohols, peptides and amino acids. Carbohydrates such as D-glucose or D-galactose are degraded via the modified, branched Entner-Doudoroff (ED) pathway whereas growth on peptides requires the Embden-Meyerhof-Parnas (EMP) pathway for gluconeogenesis. As for most hyperthermophilic Archaea an important control point is established at the level of triosephophate conversion, however, the regulation at the level of pyruvate/phosphoenolpyruvate conversion was not tackled so far. Here we describe the cloning, expression, purification and characterization of the pyruvate kinase (PK, SSO0981) and the phosphoenolpyruvate synthetase (PEPS, SSO0883) of Sul. solfataricus. The PK showed only catabolic activity [catalytic efficiency (PEP): 627.95 mM(-1) s(-1), 70 degrees C] with phosphoenolpyruvate as substrate and ADP as phosphate acceptor and was allosterically inhibited by ATP and isocitrate (K-i 0.8 mM). The PEPS was reversible, however, exhibited preferred activity in the gluconeogenic direction [catalytic efficiency (pyruvate): 1.04 mM(-1) s(-1), 70 degrees C] and showed some inhibition by AMP and u-ketoglutarate. The gene SSO2829 annotated as PEPS/pyruvate:phosphate dikinase (PPDK) revealed neither PEPS nor PPDK activity. Our studies suggest that the energy charge of the cell as well as the availability of building blocks in the citric acid cycle and the carbon/nitrogen balance plays a major role in the Sul. solfataricus carbon switch. The comparison of regulatory features of well-studied hyperthermophilic Archaea reveals a close link and sophisticated coordination between the respective sugar kinases and the kinetic and regulatory properties of the enzymes at the level of PEP-pyruvate conversion.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] The Sulfolobus solfataricus P2 genome project
    Charlebois, RL
    Gaasterland, T
    Ragan, MA
    Doolittle, WF
    Sensen, CW
    FEBS LETTERS, 1996, 389 (01) : 88 - 91
  • [2] Completing the sequence of the Sulfolobus solfataricus P2 genome
    Sensen, CW
    Charlebois, RL
    Chow, C
    Clausen, IG
    Curtis, B
    Doolittle, WF
    Duguet, M
    Erauso, G
    Gaasterland, T
    Garrett, RA
    Gordon, P
    de Jong, IH
    Jeffries, AC
    Kozera, C
    Medina, N
    De Moors, A
    van der Oost, J
    Phan, H
    Ragan, MA
    Schenk, MF
    She, QX
    Singh, RK
    Tolstrup, N
    EXTREMOPHILES, 1998, 2 (03) : 305 - 312
  • [3] Completing the sequence of the Sulfolobus solfataricus P2 genome
    C. W. Sensen
    Robert L. Charlebois
    Cynthia Chow
    Ib Groth Clausen
    Bruce Curtis
    W. Ford Doolittle
    Michel Duguet
    Gael Erauso
    Terry Gaasterland
    Roger A. Garrett
    Paul Gordon
    I. Heikamp de Jong
    Alex C. Jeffries
    Catherine Kozera
    Nadine Medina
    Anick De Moors
    John van der Oost
    Hien Phan
    Mark A. Ragan
    Margaret E. Schenk
    Qunxin She
    Rama K. Singh
    Niels Tolstrup
    Extremophiles, 1998, 2 : 305 - 312
  • [4] Identification and characterization of the Sulfolobus solfataricus P2 proteome
    Chong, PK
    Wright, PC
    JOURNAL OF PROTEOME RESEARCH, 2005, 4 (05) : 1789 - 1798
  • [5] The complete genome of the crenarchaeon Sulfolobus solfataricus P2
    She, Q
    Singh, RK
    Confalonieri, F
    Zivanovic, Y
    Allard, G
    Awayez, MJ
    Chan-Weiher, CCY
    Clausen, IG
    Curtis, BA
    De Moors, A
    Erauso, G
    Fletcher, C
    Gordon, PMK
    Heikamp-de Jong, I
    Jeffries, AC
    Kozera, CJ
    Medina, N
    Peng, X
    Thi-Ngoc, HP
    Redder, P
    Schenk, ME
    Theriault, C
    Tolstrup, N
    Charlebois, RL
    Doolittle, WF
    Duguet, M
    Gaasterland, T
    Garrett, RA
    Ragan, MA
    Sensen, CW
    Van der Oost, J
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (14) : 7835 - 7840
  • [6] Proteome analysis of Sulfolobus solfataricus p2 propanol metabolism
    Chong, Poh Kuan
    Burja, Adam M.
    Radianingtyas, Helia
    Fazeli, Alireza
    Wright, Phillip C.
    JOURNAL OF PROTEOME RESEARCH, 2007, 6 (04) : 1430 - 1439
  • [7] Biodesulfurization of DBT by a hyperthermophilic archaeon Sulfolobus solfataricus P2
    Gun, Gokhan
    Doganay, Gizem Dinler
    Yurum, Yuda
    CURRENT OPINION IN BIOTECHNOLOGY, 2013, 24 : S34 - S35
  • [8] Effect of O2 concentrations on Sulfolobus solfataricus P2
    Simon, Gwenola
    Walther, Jasper
    Zabeti, Nathalie
    Combet-Blanc, Yannick
    Auria, Richard
    van der Oost, John
    Casalot, Laurence
    FEMS MICROBIOLOGY LETTERS, 2009, 299 (02) : 255 - 260
  • [9] A specific proteomic response of Sulfolobus solfataricus P2 to gamma radiations
    Larmony, Sharon
    Garnier, Florence
    Hoste, Astrid
    Nadal, Marc
    BIOCHIMIE, 2015, 118 : 270 - 277
  • [10] Proteomic mapping of the hyperthermophilic and acidophilic archaeon Sulfolobus solfataricus P2
    Barry, Richard C.
    Young, Mark J.
    Stedman, Kenneth M.
    Dratz, Edward A.
    ELECTROPHORESIS, 2006, 27 (14) : 2970 - 2983