Automatic Detection of the Existence of Subarachnoid Hemorrhage from Clinical CT Images

被引:17
|
作者
Li, Yonghong [2 ,3 ,4 ,5 ]
Wu, Jianhuang [2 ,3 ]
Li, Hongwei [6 ]
Li, Degang [7 ]
Du, Xiaohua [2 ,3 ]
Chen, Zhijun [2 ,3 ]
Jia, Fucang [2 ,3 ]
Hu, Qingmao [1 ,2 ,3 ]
机构
[1] Univ Town Shenzhen, Shenzhen Inst Adv Technol, Res Ctr Human Comp Interact, Shenzhen 518055, Peoples R China
[2] Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen, Peoples R China
[3] Chinese Univ Hong Kong, Hong Kong, Hong Kong, Peoples R China
[4] Chinese Acad Sci, Inst Comp Technol, Beijing, Peoples R China
[5] Chinese Acad Sci, Grad Univ, Beijing, Peoples R China
[6] Ningxia Med Univ, Yinchuan, Peoples R China
[7] Inner Mongolia Med Coll, Affiliated Hosp 3, Baotou, Peoples R China
基金
中国国家自然科学基金;
关键词
Subarachnoid hemorrhage; Support vector machine; Non-contrast CT; Atlas based registration; COMPUTED-TOMOGRAPHY; BRAIN; RESTORATION;
D O I
10.1007/s10916-010-9587-8
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Subarachnoid hemorrhage (SAH) is a medical emergency which can lead to death or severe disability. Misinterpretation of computed tomography (CT) in patients with SAH is a common problem. How to improve the accuracy of diagnosis is a great challenge to both the clinical physicians and medical researchers. In this paper we proposed a method for the automatic detection of SAH on clinical non-contrast head CT scans. The novelty includes approximation of the subarachnoid space in head CT using an atlas based registration, and exploration of support vector machine to the detection of SAH. The study included 60 patients with SAH and 69 normal controls from clinical hospitals. Thirty patients with SAH and 30 normal controls were used for training, while the rest were used for testing to achieve a testing sensitivity of 100% and specificity of 89.7%. The proposed algorithm might be a potential tool to screen the existence of SAH.
引用
收藏
页码:1259 / 1270
页数:12
相关论文
共 50 条
  • [1] Automatic Detection of the Existence of Subarachnoid Hemorrhage from Clinical CT Images
    Yonghong Li
    Jianhuang Wu
    Hongwei Li
    Degang Li
    Xiaohua Du
    Zhijun Chen
    Fucang Jia
    Qingmao Hu
    Journal of Medical Systems, 2012, 36 : 1259 - 1270
  • [2] Automatic subarachnoid space segmentation and hemorrhage detection in clinical head CT scans
    Yong-Hong Li
    Liang Zhang
    Qing-Mao Hu
    Hong-Wei Li
    Fu-Cang Jia
    Jian-Huang Wu
    International Journal of Computer Assisted Radiology and Surgery, 2012, 7 : 507 - 516
  • [3] Automatic subarachnoid space segmentation and hemorrhage detection in clinical head CT scans
    Li, Yong-Hong
    Zhang, Liang
    Hu, Qing-Mao
    Li, Hong-Wei
    Jia, Fu-Cang
    Wu, Jian-Huang
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2012, 7 (04) : 507 - 516
  • [4] Automatic Quantification of Subarachnoid Hemorrhage on Noncontrast CT
    Boers, A. M.
    Zijistra, I. A.
    Gathier, C. S.
    van den Berg, R.
    Slump, C. H.
    Marquering, H. A.
    Majoie, C. B.
    AMERICAN JOURNAL OF NEURORADIOLOGY, 2014, 35 (12) : 2279 - 2286
  • [5] Registration of Head CT Images with Subarachnoid Hemorrhage
    Li, Yonghong
    Wu, Jianhuang
    Chen, Zhijun
    Jia, Fucang
    Hu, Qingmao
    2010 3RD INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING AND INFORMATICS (BMEI 2010), VOLS 1-7, 2010, : 498 - 502
  • [6] Automatic Segmentation of Intracerebral Hemorrhage from Brain CT Images
    Gautam, Anjali
    Raman, Balasubramanian
    MACHINE INTELLIGENCE AND SIGNAL ANALYSIS, 2019, 748 : 753 - 764
  • [7] CT DETECTION OF INTRACRANIAL ANEURYSMS IN SUBARACHNOID HEMORRHAGE
    GHOSHHAJRA, K
    SCOTTI, L
    MARASCO, J
    BAGHAINAIINI, P
    AMERICAN JOURNAL OF ROENTGENOLOGY, 1979, 132 (04) : 613 - 616
  • [8] PERIMESENCEPHALIC SUBARACHNOID HEMORRHAGE - CLINICAL AND CT ASPECTS
    KAIM, A
    MADER, I
    KIRSCH, E
    RADU, EW
    STEINBRICH, W
    FORTSCHRITTE AUF DEM GEBIETE DER RONTGENSTRAHLEN UND DER NEUEN BILDGEBENDEN VERFAHREN, 1995, 162 (04): : 274 - 281
  • [9] Automatic Detection of the Pulmonary Nodules from CT Images
    Elsayed, Omnia
    Mahar, Khaled
    Kholief, Mohamed
    Khater, Hatem A.
    2015 SAI INTELLIGENT SYSTEMS CONFERENCE (INTELLISYS), 2015, : 742 - 746
  • [10] AUTOMATIC DETECTION OF EXUDATES AND HEMORRHAGE IN FUNDUS IMAGES
    Mohamed, Berbar A.
    PROCEEDINGS OF 2020 37TH NATIONAL RADIO SCIENCE CONFERENCE (NRSC), 2020, : 277 - 284