iTRAQ-Based Protein Profiling and Biochemical Analysis of Two Contrasting Rice Genotypes Revealed Their Differential Responses to Salt Stress

被引:23
|
作者
Hussain, Sajid [1 ]
Zhu, Chunquan [1 ]
Bai, Zhigang [1 ]
Huang, Jie [1 ]
Zhu, Lianfeng [1 ]
Cao, Xiaochuang [1 ]
Nanda, Satyabrata [1 ]
Hussain, Saddam [2 ]
Riaz, Aamir [1 ]
Liang, Qingduo [1 ]
Wang, Liping [1 ]
Li, Yefeng [1 ]
Jin, Qianyu [1 ]
Zhang, Junhua [1 ]
机构
[1] China Natl Rice Res Inst, State Key Lab Rice Biol, Hangzhou 310006, Zhejiang, Peoples R China
[2] Univ Agr Faisalabad, Dept Agron, Punjab 38000, Pakistan
关键词
Salt stress; Oryza sativa; proteomics; iTRAQ quantification; cell membrane injury; root activity; ANTIOXIDANT DEFENSE SYSTEM; SALINITY STRESS; CONSTITUTIVE EXPRESSION; GROWTH-CHARACTERISTICS; GLUCOSIDASE ACTIVITY; PROTEOMIC APPROACH; ROOT PROTEOME; BISPHENOL-A; TOLERANCE; ARABIDOPSIS;
D O I
10.3390/ijms20030547
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Salt stress is one of the key abiotic stresses causing huge productivity losses in rice. In addition, the differential sensitivity to salinity of different rice genotypes during different growth stages is a major issue in mitigating salt stress in rice. Further, information on quantitative proteomics in rice addressing such an issue is scarce. In the present study, an isobaric tags for relative and absolute quantitation (iTRAQ)-based comparative protein quantification was carried out to investigate the salinity-responsive proteins and related biochemical features of two contrasting rice genotypesNipponbare (NPBA, japonica) and Liangyoupeijiu (LYP9, indica), at the maximum tillering stage. The rice genotypes were exposed to four levels of salinity: 0 (control; CK), 1.5 (low salt stress; LS), 4.5 (moderate salt stress; MS), and 7.5 g of NaCl/kg dry soil (high salt stress, HS). The iTRAQ protein profiling under different salinity conditions identified a total of 5340 proteins with 1% FDR in both rice genotypes. In LYP9, comparisons of LS, MS, and HS compared with CK revealed the up-regulation of 28, 368, and 491 proteins, respectively. On the other hand, in NPBA, 239 and 337 proteins were differentially upregulated in LS and MS compared with CK, respectively. Functional characterization by KEGG and COG, along with the GO enrichment results, suggests that the differentially expressed proteins are mainly involved in regulation of salt stress responses, oxidation-reduction responses, photosynthesis, and carbohydrate metabolism. Biochemical analysis of the rice genotypes revealed that the Na+ and Cl- uptake from soil to the leaves via the roots was increased with increasing salt stress levels in both rice genotypes. Further, increasing the salinity levels resulted in increased cell membrane injury in both rice cultivars, however more severely in NPBA. Moreover, the rice root activity was found to be higher in LYP9 roots compared with NPBA under salt stress conditions, suggesting the positive role of rice root activity in mitigating salinity. Overall, the results from the study add further insights into the differential proteome dynamics in two contrasting rice genotypes with respect to salt tolerance, and imply the candidature of LYP9 to be a greater salt tolerant genotype over NPBA.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] iTRAQ-based protein profiling and functional identification of four genes involved in rice basal resistance against Magnaporthe oryzae in two contrasting rice genotypes
    Li, Chenchen
    Chen, Ziqiang
    Deng, Yun
    Jiang, Shuyu
    Su, Yan
    Yang, Shaohua
    Lin, Yan
    Tian, Dagang
    STRESS BIOLOGY, 2023, 3 (01):
  • [2] iTRAQ-based protein profiling and functional identification of four genes involved in rice basal resistance against Magnaporthe oryzae in two contrasting rice genotypes
    Chenchen Li
    Ziqiang Chen
    Yun Deng
    Shuyu Jiang
    Yan Su
    Shaohua Yang
    Yan Lin
    Dagang Tian
    Stress Biology, 3
  • [3] Transcriptome analysis and differential gene expression profiling of two contrasting quinoa genotypes in response to salt stress
    Shi, Pibiao
    Gu, Minfeng
    BMC PLANT BIOLOGY, 2020, 20 (01)
  • [4] Transcriptome analysis and differential gene expression profiling of two contrasting quinoa genotypes in response to salt stress
    Pibiao Shi
    Minfeng Gu
    BMC Plant Biology, 20
  • [5] Comparative Transcriptional Analysis of Two Contrasting Rice Genotypes in Response to Salt Stress
    Ye, Xiaoxue
    Tie, Weiwei
    Xu, Jianlong
    Ding, Zehong
    Hu, Wei
    AGRONOMY-BASEL, 2022, 12 (05):
  • [6] Comparative Metabolite Profiling of Two Rice Genotypes with Contrasting Salt Stress Tolerance at the Seedling Stage
    Zhao, Xiuqin
    Wang, Wensheng
    Zhang, Fan
    Deng, Jianli
    Li, Zhikang
    Fu, Binying
    PLOS ONE, 2014, 9 (09):
  • [7] Comparative Transcriptional Profiling and Physiological Responses of Two Contrasting Oat Genotypes under Salt Stress
    Bin Wu
    Yarvaan Munkhtuya
    Jianjiang Li
    Yani Hu
    Qian Zhang
    Zongwen Zhang
    Scientific Reports, 8
  • [8] Comparative Transcriptional Profiling and Physiological Responses of Two Contrasting Oat Genotypes under Salt Stress
    Wu, Bin
    Munkhtuya, Yarvaan
    Li, Jianjiang
    Hu, Yani
    Zhang, Qian
    Zhang, Zongwen
    SCIENTIFIC REPORTS, 2018, 8
  • [9] Physiological Responses of Contrasting Rice Genotypes to Salt Stress at Reproductive Stage
    Maria Elisa B.GERONA
    Marjorie P.DEOCAMPO
    James A.EGDANE
    Abdelbagi M.ISMAIL
    Maribel L.DIONISIO-SESE
    Rice Science, 2019, 26 (04) : 207 - 219
  • [10] Physiological Responses of Contrasting Rice Genotypes to Salt Stress at Reproductive Stage
    Gerona, Maria Elisa B.
    Deocampo, Marjorie P.
    Egdane, James A.
    Ismail, Abdelbagi M.
    Dionisio-Sese, Maribel L.
    RICE SCIENCE, 2019, 26 (04) : 207 - 219