Subpixel image registration regularised by L1 and L2 norms

被引:1
|
作者
Huang, Qirui [1 ,2 ]
Yang, Xuan [2 ]
机构
[1] Gannan Med Univ, Coll Informat Engn, Yixueyuan Rd 1, Ganzhou 341000, Peoples R China
[2] Shenzhen Univ, Coll Comp Sci & Software, Nanhai Ave 3688, Shenzhen 518060, Peoples R China
基金
中国国家自然科学基金;
关键词
image registration; medical image processing; brain; iterative methods; nonrigid registration models; rigid registration models; subpixel image registration framework; fundus image registration data; nonrigid subpixel image registration models; rigid subpixel image registration models; transformation function; compact support radial basis functions; nonrigid registration model; rigid transformation parameters; rigid registration model; subpixel image registration problem; ALGORITHM;
D O I
10.1049/iet-ipr.2019.1384
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this study, the authors propose a subpixel image registration framework that detects and matches feature points. Rigid and nonrigid registration models are employed to solve the problem of subpixel image registration problem. A rigid registration model based on the l(2) norm is proposed to regularise the rotation coefficients using the indicator function to estimate the rigid transformation parameters. The latter estimation simplified is made easy by the reduction in the rigid transformation from two dimensions to one dimension. Furthermore, a non-rigid registration model based on the l(1) and l(2) norms is proposed to estimate the elastic coefficients of the compact support radial basis functions. Due to the linear representation of the transformation function, the rigid and nonrigid subpixel image registration models can be solved efficiently using the fast iterative shrinkage-thresholding algorithm. Experiments on a demosaicing data set, the ocean of remote sensing data set, a brain data set and the fundus image registration data set show that the proposed rigid and non-rigid registration models can accurately perform subpixel image registration.
引用
收藏
页码:2845 / 2854
页数:10
相关论文
共 50 条
  • [1] Fast algorithms for l1 norm/mixed l1 and l2 norms for image restoration
    Fu, HY
    Ng, MK
    Nikolova, M
    Barlow, J
    Ching, WK
    [J]. COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2005, VOL 4, PROCEEDINGS, 2005, 3483 : 843 - 851
  • [2] AN INEQUALITY INVOLVING THE l1, l2, AND l∞ NORMS
    Kontorovich, Aryeh
    [J]. ANALYSIS AND APPLICATIONS, 2013, 11 (06)
  • [3] Euclidean preferences in the plane under l1, l2 and l∞ norms
    Escoffier, Bruno
    Spanjaard, Olivier
    Tydrichova, Magdalena
    [J]. SOCIAL CHOICE AND WELFARE, 2024, 63 (01) : 125 - 169
  • [4] Analysis of the ratio of l1 and l2 norms in compressed sensing
    Xu, Yiming
    Narayan, Akil
    Hoang Tran
    Webster, Clayton G.
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2021, 55 : 486 - 511
  • [5] ESTIMATION OF THE MAGNETOTELLURIC IMPEDANCE TENSOR BY THE L1 AND L2 NORMS
    TURK, FJ
    ROGERS, JC
    YOUNG, CT
    [J]. GEOPHYSICS, 1985, 50 (02) : 271 - 271
  • [6] Robust landmark-based image registration using l1 and l2 norm regularizations
    Yang, Xuan
    Wang, Bo
    Li, Yan-Ran
    He, Tiancheng
    [J]. PROCEEDINGS 2015 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2015, : 425 - 428
  • [7] A nonconvex l1(l1 - l2) model for image restoration with impulse noise
    Liu, Jingjing
    Ni, Anqi
    Ni, Guoxi
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 378
  • [8] Planar Gradient Coil Design Using L1 and L2 Norms
    Lopez, Hector Sanchez
    Xu, Yajie
    Andono, Pulung Nurtantio
    Chang, Yan
    Yang, Xiaodong
    [J]. APPLIED MAGNETIC RESONANCE, 2018, 49 (09) : 959 - 973
  • [9] Planar Gradient Coil Design Using L1 and L2 Norms
    Hector Sanchez Lopez
    Yajie Xu
    Pulung Nurtantio Andono
    Yan Chang
    Xiaodong Yang
    [J]. Applied Magnetic Resonance, 2018, 49 : 959 - 973
  • [10] L1 and L2 Norms in Sensitivity Analysis of Signaling Pathway Models
    Kardynska, Malgorzata
    Smieja, Jaroslaw
    [J]. 2016 21ST INTERNATIONAL CONFERENCE ON METHODS AND MODELS IN AUTOMATION AND ROBOTICS (MMAR), 2016, : 589 - 594