On the additive group structure of the nonstandard models of the theory of integers

被引:0
|
作者
Dalgin, H
Haddad, L
Terziler, M
机构
[1] Mersin Univ, Dept Math, TR-33342 Mersin, Turkey
[2] Univ Clermont Ferrand, Univ Blaise Pascal, Dept Pure Math, F-63170 Aubiere, France
[3] EGe Univ, Dept Math, TR-35100 Izmir, Turkey
关键词
nonstandard model of arithmetic; linear mod 1 function; fiber product;
D O I
10.1002/1521-3870(200204)48:3<403::AID-MALQ403>3.0.CO;2-G
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (Z) over cap (+) denote the inverse limit of all finite cyclic groups. Let F, G and H be abelian groups with H less than or equal to G. Let FbetaH denote the abelian group (F x H, +(beta)), where +(beta) is defined by (alpha, x) +(beta) (b, y) = (a + b, x + y + beta(a) + beta(b) - beta(a + b)) for a certain beta : F --> G linear mod H meaning that beta(0) = 0 and beta(a) + beta(b) - beta(a + b) epsilon H for all a, b in F. In this paper we show that the following hold: (1) The additive group of any nonstandard model Z* of the ring Z is isomorphic to (Z(+)*/H)betaH for a certain beta:Z(+)*/H --> (Z) over cap (+) linear mod H. (2) (Z) over cap (+) is isomorphic to ((Z) over cap (+)/H)betaH for some beta:(Z) over cap (+)/H --> Q linear mod H, though (Z) over cap (+) is not the additive group of any model of Th(Z,+, x) and the exact sequence H --> (Z) over cap (+) --> (Z) over cap (+)/H is not splitting.
引用
收藏
页码:403 / 412
页数:10
相关论文
共 50 条