Critical conditions for particle motion in coarse bed materials of nonuniform size distribution

被引:13
|
作者
Bathurst, James C. [1 ]
机构
[1] Newcastle Univ, Sch Civil Engn & Geosci, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
关键词
Field data; Gravel-bed rivers; Particle entrainment; River bed structure; Sediment transport; CRITICAL SHEAR-STRESS; BEDLOAD TRANSPORT; SELECTIVE ENTRAINMENT; INCIPIENT MOTION; GRAVEL; LOAD; RIVER; SAMPLER; FLUME; POWER;
D O I
10.1016/j.geomorph.2013.05.008
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
Initiation of particle motion in a bed material of nonuniform size distribution may be quantified by (q(ci)/q(cr)) = (D-i/D-r)(b), where q(ci) is the critical unit discharge at which particle size D-i enters motion, q(cr) is the critical condition for a reference size D-r unaffected by the hiding/exposure effects associated with nonuniform size distributions, i and r refer to percentiles of the distribution and b varies from 0 (equal mobility in entrainment of all particle sizes) to 1.5-2.5 (full size selective transport). Currently there is no generally accepted method for predicting the value of b. Flume and field data are therefore combined to investigate the above relationship. Thirty-seven sets of flume data quantify the relationship between critical unit discharge and particle size for bed materials with uniform size distributions (used here to approximate full size selective transport). Field data quantify the relationship for bed materials of nonuniform size distribution at 24 sites, with b ranging from 0.15 to 1.3. Intersection of the two relationships clearly demonstrates the hiding/exposure effect; in some but not all cases, Dr is close to the median size D-50. The exponent has two clusters of values: b > 1 for sites subject to episodic rain-fed floods and data collected by bedload pit trap and tracers; and b < 0.7 for sites with seasonal snowmelt/glacial melt flow regimes and data collected by bedload sampler and large aperture trap. Field technique appears unlikely to cause variations in b of more than about 0.25. However, the clustering is consistent with possible variations in bed structure distinguishing: for b > 1, sites with relatively infrequent bedload transport where particle embedding and consolidation could reduce the mobility of coarser particles; and, for b < 0.7, a looser bed structure with frequent transport events allowing hiding/exposure and size selection effects to achieve their balance. As yet there is no firm evidence for such a dependency on bed structure but variations in b could potentially be caused by factors outside those determining equal mobility or size selection but appearing to affect b in the same way. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:170 / 184
页数:15
相关论文
共 50 条
  • [1] Particle size distribution of bed materials in the sandy river bed of alluvial rivers
    Zhang, Luohao
    Zhang, Hongwu
    Tang, Hongwu
    Zhao, Chensu
    INTERNATIONAL JOURNAL OF SEDIMENT RESEARCH, 2017, 32 (03) : 331 - 339
  • [2] Particle size distribution of bed materials in the sandy river bed of alluvial rivers
    Luohao Zhang
    Hongwu Zhang
    Hongwu Tang
    Chensu Zhao
    International Journal of Sediment Research, 2017, 32 (03) : 331 - 339
  • [3] Particle size distribution in a granular bed filter
    Du, Jianping
    Liu, Chuanping
    Yin, Shaowu
    Rehman, Ali
    Ding, Yulong
    Wang, Li
    PARTICUOLOGY, 2021, 58 : 108 - 117
  • [4] Statistical analysis of monodispersed coarse particle motion in a gas-fluidized bed
    Hou, Qinfu
    Zhou, Zongyan
    Curtis, Jennifer S.
    Yu, Aibing
    POWDER TECHNOLOGY, 2020, 363 : 107 - 111
  • [5] Numerical analysis of motion trajectory of coarse coal particle in interfering fluidized bed
    Ma J.
    Wang F.
    Shi C.
    Chen L.
    Xie Q.
    Meitan Xuebao/Journal of the China Coal Society, 2019, 44 : 243 - 248
  • [6] Development of the bed particle size distribution in a circulating fluidized bed combustor
    Klett, Cornelis
    Hartge, Ernst-Ulrich
    Werther, Joachim
    Proceedings of the 18th International Conference on Fluidized Bed Combustion, 2005, : 495 - 503
  • [7] Influence of water rate, gas rate, and bed particle size on bed-level and coarse particle flotation performance
    Dankwah, J. B.
    Asamoah, R. K.
    Zanin, M.
    Skinner, W.
    MINERALS ENGINEERING, 2022, 183
  • [8] Particle evolution mechanism of wide size distribution limestone under fluidized bed combustion conditions
    Zhao, Wenxin
    Cheng, Fangqin
    Zhang, Yuanyuan
    Zhao, Peizhen
    Yang, Fengling
    FUEL, 2023, 349
  • [9] Critical shear stress for incipient motion of a particle on a rough bed
    Lee, Hyungoo
    Balachandar, S.
    JOURNAL OF GEOPHYSICAL RESEARCH-EARTH SURFACE, 2012, 117
  • [10] Bed load discharge for discontinuous wide size distribution bed materials
    Xu, HT
    Lu, JY
    PROCEEDINGS OF THE NINTH INTERNATIONAL SYMPOSIUM ON RIVER SEDIMENTATION, VOLS 1-4, 2004, : 1472 - 1476