On the composition of quasiconvex functions and the transposition

被引:0
|
作者
Kruzik, Martin [1 ]
机构
[1] Acad Sci Czech Republic, Inst Informat Theory & Automat, CR-18208 Prague 8, Czech Republic
关键词
Polyconvexity; quasiconvexity; rank-one convexity;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
If G : R-nxm -> (R) over bar := R boolean OR {+infinity} is a convex, polyconvex or rank-one convex function, then the function g : R-mxn -> (R) over bar defined as g(A) = G(A(t)) preserves convexity, polyconvexity, or rank-one convexity, respectively. The paper shows that this does not hold in general for quasiconvexity provided n >= 2 and m >= 3.
引用
收藏
页码:207 / 213
页数:7
相关论文
共 50 条
  • [1] Approximation of quasiconvex functions by neatly quasiconvex functions
    Suliman Al-Homidan
    Loai Shaalan
    Optimization Letters, 2021, 15 : 979 - 989
  • [2] Approximation of quasiconvex functions by neatly quasiconvex functions
    Al-Homidan, Suliman
    Shaalan, Loai
    OPTIMIZATION LETTERS, 2021, 15 (03) : 979 - 989
  • [3] ON ω-QUASICONVEX FUNCTIONS
    Tabor, Jacek
    Tabor, Jozef
    Zoldak, Marek
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2012, 15 (04): : 845 - 857
  • [4] Quasiconvex functions can be approximated by quasiconvex polynomials
    Heinz, Sebastian
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2008, 14 (04) : 795 - 801
  • [5] Semicontinuity and quasiconvex functions
    Mukherjee, RN
    Reddy, LV
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1997, 94 (03) : 715 - 726
  • [6] Semicontinuity and quasiconvex functions
    Department of Applied Mathematics, Institute of Technology, Banaras Hindu Univ., Varanasi, India, India
    J. Optim. Theory Appl., 3 (715-726):
  • [7] A CHARACTERIZATION OF QUASICONVEX FUNCTIONS
    TEMAM, R
    APPLIED MATHEMATICS AND OPTIMIZATION, 1982, 8 (03): : 287 - 291
  • [8] A construction of quasiconvex functions
    Iwaniec, Tadeusz
    Kristensen, Jan
    RIVISTA DI MATEMATICA DELLA UNIVERSITA DI PARMA, 2005, 4 : 75 - 89
  • [9] AN INEQUALITY FOR QUASICONVEX FUNCTIONS
    LONGINETTI, M
    APPLICABLE ANALYSIS, 1982, 13 (02) : 93 - 96
  • [10] Characterization of Nonsmooth Semistrictly Quasiconvex and Strictly Quasiconvex Functions
    A. Daniilidis
    N. Hadjisavvas
    Journal of Optimization Theory and Applications, 1999, 102 : 525 - 536