Effect of cooperative grain boundary sliding and migration on emission of dislocations from a crack tip in nanocrystalline materials

被引:30
|
作者
Feng, H. [1 ]
Fang, Q. H. [1 ,2 ]
Zhang, L. C. [2 ]
Liu, Y. W. [1 ]
机构
[1] Hunan Univ, State Key Lab Adv Design & Mfg Vehicle Body, Changsha 410082, Hunan, Peoples R China
[2] Univ New S Wales, Sch Mech & Mfg Engn, Sydney, NSW 2052, Australia
关键词
Nanocrystalline materials; Crack; Grain boundary sliding; Grain boundary migration; Dislocation emission; WEDGE DISCLINATION DIPOLE; EDGE DISLOCATION; FRACTURE-TOUGHNESS; ULTRAHIGH STRENGTH; BRITTLE BEHAVIOR; DEFORMATION; NANOMATERIALS; DUCTILITY; STRESSES; GROWTH;
D O I
10.1016/j.mechmat.2013.02.006
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Interaction of the cooperative grain boundary sliding and migration with a crack in deformed nanocrystalline materials is investigated using the complex variable method. Effects of the two disclination dipoles produced by the cooperative deformation on the emission of lattice dislocations from the crack tip are theoretically described. The complex form expressions of the stress field and the force field are derived. The critical stress intensity factors for the first dislocation emission are calculated. Influences of disclination strength, grain size, locations of the two disclination dipoles as well as crack length on the critical stress intensity factors are discussed in detail. Results show that, the cooperative deformation has great influence on dislocation emission from the crack tip. In general, the cooperative deformation can promote the lattice dislocation emission from the crack tip, thus improve the toughness of the nanocrystalline materials. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:39 / 48
页数:10
相关论文
共 50 条
  • [1] Effect of cooperative grain boundary sliding and migration on dislocation emission from interface collinear crack tip in nanocrystalline bi-materials
    Yu, M.
    Peng, X. H.
    Wen, P. H.
    ACTA MECHANICA, 2018, 229 (09) : 3901 - 3913
  • [2] Effect of cooperative grain boundary sliding and migration on dislocation emission from a branched crack tip in deformed nanocrystalline solids
    Tengwu He
    Wanshen Xiao
    Yan Zhang
    Haiping Zhu
    International Journal of Fracture, 2017, 206 : 1 - 10
  • [3] Effect of cooperative grain boundary sliding and migration on dislocation emission from a branched crack tip in deformed nanocrystalline solids
    He, Tengwu
    Xiao, Wanshen
    Zhang, Yan
    Zhu, Haiping
    INTERNATIONAL JOURNAL OF FRACTURE, 2017, 206 (01) : 1 - 10
  • [4] Effect of cooperative nanograin boundary sliding and migration on dislocation emission from a blunt nanocrack tip in nanocrystalline materials
    Zhao, Yingxin
    Fang, Qihong
    Liu, Youwen
    PHILOSOPHICAL MAGAZINE, 2014, 94 (07) : 700 - 730
  • [5] Effect of cooperative grain boundary sliding and migration on crack growth in nanocrystalline solids
    Ovid'ko, I. A.
    Sheinerman, A. G.
    Aifantis, E. C.
    ACTA MATERIALIA, 2011, 59 (12) : 5023 - 5031
  • [6] Effect of cooperative grain boundary sliding and migration on dislocation emitting from a semi-elliptical blunt crack tip in nanocrystalline solids
    Yu, Min
    Fang, Qihong
    Feng, Hui
    Liu, Youwen
    ACTA MECHANICA, 2014, 225 (07) : 2005 - 2019
  • [7] Effect of cooperative grain boundary sliding and migration on dislocation emitting from a semi-elliptical blunt crack tip in nanocrystalline solids
    Min Yu
    Qihong Fang
    Hui Feng
    Youwen Liu
    Acta Mechanica, 2014, 225 : 2005 - 2019
  • [8] Cooperative grain boundary sliding in nanocrystalline materials
    Sergueeva, A. V.
    Mara, N. A.
    Krasilnikov, N. A.
    Valiev, R. Z.
    Mukherjee, A. K.
    PHILOSOPHICAL MAGAZINE, 2006, 86 (36) : 5797 - 5804
  • [9] Influence of grain boundary sliding and grain size on dislocation emission from a crack tip
    Fang, Qihong
    Zhang, Liangchi
    Liu, Youwen
    INTERNATIONAL JOURNAL OF DAMAGE MECHANICS, 2014, 23 (02) : 192 - 202
  • [10] Cooperative Grain Boundary Sliding and Migration Process in Nanocrystalline Solids
    Bobylev, S. V.
    Morozov, N. F.
    Ovid'ko, I. A.
    PHYSICAL REVIEW LETTERS, 2010, 105 (05)