Multi-trait and multi-environment QTL analyses of yield and a set of physiological traits in pepper

被引:38
|
作者
Alimi, N. A. [1 ,2 ]
Bink, M. C. A. M. [1 ]
Dieleman, J. A. [3 ]
Magan, J. J. [4 ]
Wubs, A. M. [1 ]
Palloix, A. [2 ]
van Eeuwijk, F. A. [1 ]
机构
[1] Biometris Wageningen Univ & Res Ctr, NL-6700 AC Wageningen, Netherlands
[2] INRA, PACA, GAFL UR 1052, F-84143 Montfavet, France
[3] Wageningen UR Greenhouse Hort, NL-6700 AP Wageningen, Netherlands
[4] Fdn Cajamar, Estn Expt, El Ejido 04710, Spain
关键词
MIXED-MODEL APPROACH; CAPSICUM-ANNUUM; COMPLEX TRAITS; FRUIT SIZE; BARLEY; LOCI; COVARIABLES; DROUGHT; TRIALS; SHAPE;
D O I
10.1007/s00122-013-2160-3
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
A mixed model framework was defined for QTL analysis of multiple traits across multiple environments for a RIL population in pepper. Detection power for QTLs increased considerably and detailed study of QTL by environment interactions and pleiotropy was facilitated. For many agronomic crops, yield is measured simultaneously with other traits across multiple environments. The study of yield can benefit from joint analysis with other traits and relations between yield and other traits can be exploited to develop indirect selection strategies. We compare the performance of three multi-response QTL approaches based on mixed models: a multi-trait approach (MT), a multi-environment approach (ME), and a multi-trait multi-environment approach (MTME). The data come from a multi-environment experiment in pepper, for which 15 traits were measured in four environments. The approaches were compared in terms of number of QTLs detected for each trait, the explained variance, and the accuracy of prediction for the final QTL model. For the four environments together, the superior MTME approach delivered a total of 47 regions containing putative QTLs. Many of these QTLs were pleiotropic and showed quantitative QTL by environment interaction. MTME was superior to ME and MT in the number of QTLs, the explained variance and accuracy of predictions. The large number of model parameters in the MTME approach was challenging and we propose several guidelines to help obtain a stable final QTL model. The results confirmed the feasibility and strengths of novel mixed model QTL methodology to study the architecture of complex traits.
引用
收藏
页码:2597 / 2625
页数:29
相关论文
共 50 条
  • [1] Multi-trait and multi-environment QTL analyses of yield and a set of physiological traits in pepper
    N. A. Alimi
    M. C. A. M. Bink
    J. A. Dieleman
    J. J. Magán
    A. M. Wubs
    A. Palloix
    F. A. van Eeuwijk
    Theoretical and Applied Genetics, 2013, 126 : 2597 - 2625
  • [2] Multi-Trait and Multi-Environment QTL Analyses for Resistance to Wheat Diseases
    Sukhwinder-Singh
    Hernandez, Mateo V.
    Crossa, Jose
    Singh, Pawan K.
    Bains, Navtej S.
    Singh, Kuldeep
    Sharma, Indu
    PLOS ONE, 2012, 7 (06):
  • [3] Multi-trait multi-environment diallel analyses for maize breeding
    Coelho, Igor Ferreira
    Alves, Rodrigo Silva
    Rocha, Joao Romero do Amaral Santos de Carvalho
    Peixoto, Marco Antonio
    Teodoro, Larissa Pereira Ribeiro
    Teodoro, Paulo Eduardo
    Pinto, Jefferson Fernando Naves
    dos Reis, Edesio Fialho
    Bhering, Leonardo Lopes
    EUPHYTICA, 2020, 216 (09)
  • [4] Multi-trait multi-environment diallel analyses for maize breeding
    Igor Ferreira Coelho
    Rodrigo Silva Alves
    João Romero do Amaral Santos de Carvalho Rocha
    Marco Antônio Peixoto
    Larissa Pereira Ribeiro Teodoro
    Paulo Eduardo Teodoro
    Jefferson Fernando Naves Pinto
    Edésio Fialho dos Reis
    Leonardo Lopes Bhering
    Euphytica, 2020, 216
  • [5] Genetic and QTL analyses of yield and a set of physiological traits in pepper
    N. A. Alimi
    M. C. A. M. Bink
    J. A. Dieleman
    M. Nicolaï
    M. Wubs
    E. Heuvelink
    J. Magan
    R. E. Voorrips
    J. Jansen
    P. C. Rodrigues
    G. W. A. M. van der Heijden
    A. Vercauteren
    M. Vuylsteke
    Y. Song
    C. Glasbey
    A. Barocsi
    V. Lefebvre
    A. Palloix
    F. A. van Eeuwijk
    Euphytica, 2013, 190 : 181 - 201
  • [6] Genetic and QTL analyses of yield and a set of physiological traits in pepper
    Alimi, N. A.
    Bink, M. C. A. M.
    Dieleman, J. A.
    Nicolai, M.
    Wubs, M.
    Heuvelink, E.
    Magan, J.
    Voorrips, R. E.
    Jansen, J.
    Rodrigues, P. C.
    van der Heijden, G. W. A. M.
    Vercauteren, A.
    Vuylsteke, M.
    Song, Y.
    Glasbey, C.
    Barocsi, A.
    Lefebvre, V.
    Palloix, A.
    van Eeuwijk, F. A.
    EUPHYTICA, 2013, 190 (02) : 181 - 201
  • [7] Multi-trait multi-environment QTL modelling for drought-stress adaptation in maize
    Malosetti, M.
    Ribaut, J. M.
    Vargas, M.
    Crossa, J.
    Boer, M. P.
    Van Eeuwijk, F. A.
    SCALE AND COMPLEXITY IN PLANT SYSTEMS RESEARCH: GENE-PLANT-CROP RELATIONS, 2007, 21 : 25 - +
  • [8] Multi-trait and multi-environment QTL analysis reveals the impact of seed colour on seed composition traits in Brassica napus
    Bianyun Yu
    Kerry Boyle
    Wentao Zhang
    Stephen J. Robinson
    Erin Higgins
    Lanette Ehman
    Jo-Anne Relf-Eckstein
    Gerhard Rakow
    Isobel A. P. Parkin
    Andrew G. Sharpe
    Pierre R. Fobert
    Molecular Breeding, 2016, 36
  • [9] Multi-trait and multi-environment QTL analysis reveals the impact of seed colour on seed composition traits in Brassica napus
    Yu, Bianyun
    Boyle, Kerry
    Zhang, Wentao
    Robinson, Stephen J.
    Higgins, Erin
    Ehman, Lanette
    Relf-Eckstein, Jo-Anne
    Rakow, Gerhard
    Parkin, Isobel A. P.
    Sharpe, Andrew G.
    Fobert, Pierre R.
    MOLECULAR BREEDING, 2016, 36 (08)
  • [10] A Genomic Bayesian Multi-trait and Multi-environment Model
    Montesinos-Lopez, Osval A.
    Montesinos-Lopez, Abelardo
    Crossa, Jose
    Toledo, Fernando H.
    Perez-Hernandez, Oscar
    Eskridge, Kent M.
    Rutkoski, Jessica
    G3-GENES GENOMES GENETICS, 2016, 6 (09): : 2725 - 2744