Pendulum's rotational motion governed by a stochastic Mathieu equation

被引:40
|
作者
Yurchenko, D. [1 ]
Naess, A. [2 ]
Alevras, P. [1 ]
机构
[1] Heriot Watt Univ, Dept Mech Engn, Edinburgh, Midlothian, Scotland
[2] NTNU, Dept Math Sci, Trondheim, Norway
关键词
Mathieu equation; Narrowband parametric excitation; Probability density function; Instability domain; Rotational motion; Wave energy converter; SYSTEMS; ORBITS;
D O I
10.1016/j.probengmech.2012.10.004
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper considers rotational motion of a nonlinear Mathieu equation with a narrow-band stochastic excitation. The path integration technique is utilized to obtain the joint probability density function of the response, which is used to construct domains of rotational motion in parameter space. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:12 / 18
页数:7
相关论文
共 50 条
  • [1] The stochastic Mathieu's equation
    Poulin, Francis J.
    Flierl, Glenn R.
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2008, 464 (2095): : 1885 - 1904
  • [2] Chaos for a microelectromechanical oscillator governed by the nonlinear Mathieu equation
    DeMartini, Barry E.
    Butterfield, Holly E.
    Moehlis, Jeff
    Turner, Kimberly L.
    [J]. JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2007, 16 (06) : 1314 - 1323
  • [3] Rotational motion of a mathematical pendulum
    K. N. Anakhaev
    [J]. Doklady Physics, 2015, 60 : 249 - 254
  • [4] Rotational motion of a mathematical pendulum
    Anakhaev, K. N.
    [J]. DOKLADY PHYSICS, 2015, 60 (06) : 249 - 254
  • [5] Adaptation of the S-5-S pendulum seismometer for measurement of rotational ground motion
    Knejzlik, Jaromir
    Kalab, Zdenek
    Rambousky, Zdenek
    [J]. JOURNAL OF SEISMOLOGY, 2012, 16 (04) : 649 - 656
  • [6] Adaptation of the S-5-S pendulum seismometer for measurement of rotational ground motion
    Jaromír Knejzlík
    Zdeněk Kaláb
    Zdeněk Rambouský
    [J]. Journal of Seismology, 2012, 16 : 649 - 656
  • [7] On the modified Mathieu's equation
    Jeffreys, H
    [J]. PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1925, 23 : 449 - 454
  • [8] Exact solutions of Mathieu's equation
    Daniel, Derek J.
    [J]. PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2020, 2020 (04):
  • [9] On certain solutions of Mathieu's equation
    Jeffreys, H
    [J]. PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1925, 23 : 437 - 448
  • [10] Approximate solutions to Mathieu's equation
    Wilkinson, Samuel A.
    Vogt, Nicolas
    Golubev, Dmitry S.
    Cole, Jared H.
    [J]. PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2018, 100 : 24 - 30