BASICS OF QUANTUM MECHANICS, GEOMETRIZATION AND SOME APPLICATIONS TO QUANTUM INFORMATION

被引:15
|
作者
Clemente-Gallardo, Jesus [1 ]
机构
[1] Univ Zaragoza, Inst Biocomputac & Fis Sistemas Complejos, E-50009 Zaragoza, Spain
关键词
Geometric Quantum Mechanics; Kahler manifold; momentum map; Weyl-Wigner formalism; qubits; qutrits; entanglement;
D O I
10.1142/S0219887808003156
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we present a survey of the use of differential geometric formalisms to describe Quantum Mechanics. We analyze Schrodinger framework from this perspective and provide a description of the Weyl-Wigner construction. Finally, after reviewing the basics of the geometric formulation of quantum mechanics, we apply the methods presented to the most interesting cases of finite dimensional Hilbert spaces: those of two, three and four level systems (one qubit, one qutrit and two qubit systems). As a more practical application, we discuss the advantages that the geometric formulation of quantum mechanics can provide us with in the study of situations as the functional independence of entanglement witnesses.
引用
收藏
页码:989 / 1032
页数:44
相关论文
共 50 条
  • [1] Geometrization of quantum mechanics
    Carinena, J. F.
    Clemente-Gallardo, J.
    Marmo, G.
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 2007, 152 (01) : 894 - 903
  • [2] Geometrization of quantum mechanics
    J. F. Cariñena
    J. Clemente-Gallardo
    G. Marmo
    [J]. Theoretical and Mathematical Physics, 2007, 152 : 894 - 903
  • [3] On the geometrization of quantum mechanics
    Tavernelli, Ivano
    [J]. ANNALS OF PHYSICS, 2016, 371 : 239 - 253
  • [4] SOME APPLICATIONS OF INFORMATION THEORY IN QUANTUM MECHANICS
    MAJERNIK, V
    [J]. ACTA PHYSICA AUSTRIACA, 1967, 25 (03): : 243 - &
  • [5] GEOMETRIZATION OF QUANTUM-MECHANICS
    KIBBLE, TWB
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1979, 65 (02) : 189 - 201
  • [6] The Basics of Quantum Mechanics
    Yserentant, Harry
    [J]. REGULARITY AND APPROXIMABILITY OF ELECTRONIC WAVE FUNCTIONS, 2010, 2000 : 27 - 50
  • [7] A geometrization of quantum mutual information
    Pastorello, Davide
    [J]. INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2019, 17 (02)
  • [8] Finslerian geometrization of quantum mechanics In the hydrodynamical representation
    Liang, Shi-Dong
    Sabau, Sorin V.
    Harko, Tiberiu
    [J]. PHYSICAL REVIEW D, 2019, 100 (10)
  • [9] Some Applications of Fractional Quantum Mechanics
    Jiang, Xiaoyun
    Xu, Mingyu
    [J]. ICNC 2008: FOURTH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, VOL 3, PROCEEDINGS, 2008, : 688 - 691
  • [10] On the geometrization of Bohmian mechanics: A new approach to quantum gravity
    Shojai, F
    Golshani, M
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1998, 13 (04): : 677 - 693