The penalty interior-point method fails to converge

被引:3
|
作者
Leyffer, S [1 ]
机构
[1] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA
来源
OPTIMIZATION METHODS & SOFTWARE | 2005年 / 20卷 / 4-5期
关键词
nonlinear programming; interior-point methods; PIPA; MPEC; MPCC; equilibrium constraints;
D O I
10.1080/10556780500140078
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Equilibrium equations in the form of complementarity conditions often appear as constraints in optimization problems. Problems of this type are commonly referred to as mathematical programs with complementarity constraints (MPCCs). A popular method for solving MPCCs is the penalty interior-point algorithm (PIPA). This paper presents an example for which PIPA converges to a nonstationary point, providing a counterexample to the established theory. The reasons for this adverse behavior are discussed.
引用
收藏
页码:559 / 568
页数:10
相关论文
共 50 条
  • [1] An interior-point piecewise linear penalty method for nonlinear programming
    Chen, Lifeng
    Goldfarb, Donald
    [J]. MATHEMATICAL PROGRAMMING, 2011, 128 (1-2) : 73 - 122
  • [2] An interior-point piecewise linear penalty method for nonlinear programming
    Lifeng Chen
    Donald Goldfarb
    [J]. Mathematical Programming, 2011, 128 : 73 - 122
  • [3] An Interior-Point l1-Penalty Method for Nonlinear Optimization
    Gould, Nick I. M.
    Orban, Dominique
    Toint, Philippe L.
    [J]. NUMERICAL ANALYSIS AND OPTIMIZATION, NAO-III, 2015, 134 : 117 - 150
  • [4] Interior-point algorithms, penalty methods and equilibrium problems
    Benson, Hande Y.
    Sen, Arun
    Shanno, David F.
    Vanderbei, Robert J.
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2006, 34 (02) : 155 - 182
  • [5] Interior-Point Algorithms, Penalty Methods and Equilibrium Problems
    Hande Y. Benson
    Arun Sen
    David F. Shanno
    Robert J. Vanderbei
    [J]. Computational Optimization and Applications, 2006, 34 : 155 - 182
  • [6] Inexact interior-point method
    Bellavia, S
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1998, 96 (01) : 109 - 121
  • [7] Inexact Interior-Point Method
    S. Bellavia
    [J]. Journal of Optimization Theory and Applications, 1998, 96 : 109 - 121
  • [9] On the complexity of a practical interior-point method
    Nash, SG
    Sofer, A
    [J]. SIAM JOURNAL ON OPTIMIZATION, 1998, 8 (03) : 833 - 849
  • [10] An interior-point method for semidefinite programming
    Helmberg, C
    Rendl, F
    Vanderbei, RJ
    Wolkowicz, H
    [J]. SIAM JOURNAL ON OPTIMIZATION, 1996, 6 (02) : 342 - 361