Formation and optogenetic control of engineered 3D skeletal muscle bioactuators

被引:214
|
作者
Sakar, Mahmut Selman [1 ]
Neal, Devin [1 ]
Boudou, Thomas [2 ]
Borochin, Michael A. [2 ]
Li, Yinqing [3 ]
Weiss, Ron [3 ,4 ]
Kamm, Roger D. [1 ,4 ]
Chen, Christopher S. [2 ]
Asada, H. Harry [1 ]
机构
[1] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
[2] Univ Penn, Dept Bioengn, Philadelphia, PA 19104 USA
[3] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[4] MIT, Dept Biol Engn, Cambridge, MA 02139 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
FORCE GENERATION; OPTICAL CONTROL; IN-VITRO; STIFFNESS; ACTUATORS; CELLS; HEART; CHANNELRHODOPSIN-2; EXCITABILITY; FABRICATION;
D O I
10.1039/c2lc40338b
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Densely arrayed skeletal myotubes are activated individually and as a group using precise optical stimulation with high spatiotemporal resolution. Skeletal muscle myoblasts are genetically encoded to express a light-activated cation channel, Channelrhodopsin-2, which allows for spatiotemporal coordination of a multitude of skeletal myotubes that contract in response to pulsed blue light. Furthermore, ensembles of mature, functional 3D muscle microtissues have been formed from the optogenetically encoded myoblasts using a high-throughput device. The device, called "skeletal muscle on a chip'', not only provides the myoblasts with controlled stress and constraints necessary for muscle alignment, fusion and maturation, but also facilitates the measurement of forces and characterization of the muscle tissue. We measured the specific static and dynamic stresses generated by the microtissues and characterized the morphology and alignment of the myotubes within the constructs. The device allows testing of the effect of a wide range of parameters (cell source, matrix composition, microtissue geometry, auxotonic load, growth factors and exercise) on the maturation, structure and function of the engineered muscle tissues in a combinatorial manner. Our studies integrate tools from optogenetics and microelectromechanical systems (MEMS) technology with skeletal muscle tissue engineering to open up opportunities to generate soft robots actuated by a multitude of spatiotemporally coordinated 3D skeletal muscle microtissues.
引用
收藏
页码:4976 / 4985
页数:10
相关论文
共 50 条
  • [1] Damage, Healing, and Remodeling in Optogenetic Skeletal Muscle Bioactuators
    Raman, Ritu
    Grant, Lauren
    Seo, Yongbeom
    Cvetkovic, Caroline
    Gapinske, Michael
    Palasz, Alexandra
    Dabbous, Howard
    Kong, Hyunjoon
    Pinera, Pablo Perez
    Bashir, Rashid
    [J]. ADVANCED HEALTHCARE MATERIALS, 2017, 6 (12)
  • [2] Optogenetic Skeletal Muscle Powered 3D Printed Biological Machines
    Raman, R.
    Cvetkovic, C.
    Sengupta, P.
    Bashir, R.
    [J]. TISSUE ENGINEERING PART A, 2015, 21 : S23 - S23
  • [3] Modeling skeletal muscle disorders in engineered 3D cultures
    Rekersbrink, T.
    Zschuentzsch, J.
    Zimmermann, W. H.
    Schmidt, J.
    Tiburcy, M.
    [J]. NAUNYN-SCHMIEDEBERGS ARCHIVES OF PHARMACOLOGY, 2018, 391 : S42 - S42
  • [4] Development of 3D neuromuscular bioactuators
    Aydin, Onur
    Passaro, Austin P.
    Elhebeary, Mohamed
    Pagan-Diaz, Gelson J.
    Fan, Anthony
    Nuethong, Sittinon
    Bashir, Rashid
    Stice, Steven L.
    Saif, M. Taher A.
    [J]. APL BIOENGINEERING, 2020, 4 (01)
  • [5] Optogenetic Control of Skeletal Muscle Excitability
    Di Franco, Marino
    Quinonez, Marbella
    Vergara, Julio
    [J]. BIOPHYSICAL JOURNAL, 2014, 106 (02) : 731A - 732A
  • [6] PROGRESSION TOWARDS 3D TISSUE ENGINEERED INTRAFUSAL SKELETAL MUSCLE FIBRES
    Barrett, Philip
    Quick, Tom J.
    Mudera, Vivek
    Player, Darren J.
    [J]. TISSUE ENGINEERING PART A, 2022, 28 : S617 - S617
  • [7] Scalable 3D Printed Molds for Human Tissue Engineered Skeletal Muscle
    Capel, Andrew J.
    Rimington, Rowan P.
    Fleming, Jacob W.
    Player, Darren J.
    Baker, Luke A.
    Turner, Mark C.
    Jones, Julia M.
    Martin, Neil R. W.
    Ferguson, Richard A.
    Mudera, Vivek C.
    Lewis, Mark P.
    [J]. FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2019, 7 (FEB):
  • [8] Optogenetic control of morphogenesis goes 3D
    Thompson, Barry James
    [J]. EMBO JOURNAL, 2018, 37 (23):
  • [9] Optogenetic control of contractile function in skeletal muscle
    Tobias Bruegmann
    Tobias van Bremen
    Christoph C. Vogt
    Thorsten Send
    Bernd K. Fleischmann
    Philipp Sasse
    [J]. Nature Communications, 6
  • [10] Optogenetic control of contractile function in skeletal muscle
    Bruegmann, Tobias
    van Bremen, Tobias
    Vogt, Christoph C.
    Send, Thorsten
    Fleischmann, Bernd K.
    Sasse, Philipp
    [J]. NATURE COMMUNICATIONS, 2015, 6