Geometrical entropy from loop quantum gravity

被引:107
|
作者
Krasnov, KV
机构
[1] ERWIN SCHRODINGER INST MATH PHYS,A-1090 VIENNA,AUSTRIA
[2] BOGOLYUBOV INST THEORET PHYS,UA-143 KIEV,UKRAINE
来源
PHYSICAL REVIEW D | 1997年 / 55卷 / 06期
关键词
D O I
10.1103/PhysRevD.55.3505
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We adopt the point of view that (Riemannian) classical and (loop-based) quantum descriptions of geometry are macro- and microdescriptions in the usual statistical mechanical sense. This gives rise to the notion of geometrical entropy, which is defined as the logarithm of the number of different quantum states which correspond to one and the same classical geometry configuration (macrostate). We apply this idea to gravitational degrees of freedom induced on an arbitrarily chosen in space two-dimensional surface. Considering an ''ensemble'' of particularly simple quantum states, we show that the geometrical entropy S(A) corresponding to a macrostate specified by a total area A of the surface is proportional to the area S(A)=alpha A, with alpha being approximately equal to 1/16 pi l(p)(2). The result holds both for cases of open and closed surfaces. We discuss briefly physical motivations for our choice of the ensemble of quantum states.
引用
收藏
页码:3505 / 3513
页数:9
相关论文
共 50 条
  • [1] Black hole entropy from loop quantum gravity
    Rovelli, C
    [J]. PHYSICAL REVIEW LETTERS, 1996, 77 (16) : 3288 - 3291
  • [2] Entanglement entropy in loop quantum gravity
    Donnelly, William
    [J]. PHYSICAL REVIEW D, 2008, 77 (10):
  • [3] Entropy and area in loop quantum gravity
    Swain, J
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2005, 14 (12): : 2301 - 2305
  • [4] Bulk entropy in loop quantum gravity
    Livine, Etera R.
    Terno, Daniel R.
    [J]. NUCLEAR PHYSICS B, 2008, 794 (1-2) : 138 - 153
  • [5] Black hole entropy: lessons from loop quantum gravity
    Barbero G, J. Fernando
    [J]. SPANISH RELATIVITY MEETING (ERE 2010): GRAVITY AS A CROSSROAD IN PHYSICS, 2011, 314
  • [6] Entanglement entropy and correlations in loop quantum gravity
    Feller, Alexandre
    Livine, Etera R.
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2018, 35 (04)
  • [7] Horizon entropy with loop quantum gravity methods
    Pranzetti, Daniele
    Sahlmann, Hanno
    [J]. PHYSICS LETTERS B, 2015, 746 : 209 - 216
  • [8] Generic degeneracy and entropy in loop quantum gravity
    Ansari, Mohammad H.
    [J]. NUCLEAR PHYSICS B, 2008, 795 (03) : 635 - 644
  • [9] Black Holes and Entropy in Loop Quantum Gravity
    Corichi, Alejandro
    [J]. ADVANCED SCIENCE LETTERS, 2009, 2 (02) : 236 - 243
  • [10] Black hole entropy in loop quantum gravity
    Agullo, Ivan
    Fernando Barbero, J. G.
    Borja, Enrique F.
    Diaz-Polo, Jacobo
    Villasenor, Eduardo J. S.
    [J]. LOOPS 11: NON-PERTURBATIVE / BACKGROUND INDEPENDENT QUANTUM GRAVITY, 2012, 360