MO - Mineclust: A Framework for Multi-objective Clustering

被引:2
|
作者
Fisset, Benjamin [1 ]
Dhaenens, Clarisse [1 ,2 ]
Jourdan, Laetitia [1 ,2 ]
机构
[1] Inria Lille Nord Europe, DOLPHIN Project Team, F-59650 Villeneuve Dascq, France
[2] Univ Lille 1, CRIStAL, UMR CNRS 9189, F-59650 Villeneuve Dascq, France
关键词
ALGORITHM;
D O I
10.1007/978-3-319-19084-6_30
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This article presents MO - Mine(clust) a first package of the platform in development MO - Mine. This platform aims at providing optimization algorithms, and in particular multi-objective approaches, to deal with classical datamining tasks (Classification, association rules...). This package MO - Mineclust is dedicated to clustering. Indeed, it is well-known that clustering may be seen as a multi-objective optimization problem as the goal is both to minimize distances between data belonging to a same cluster, while maximizing distances between data belonging to different clusters. In this paper we present the framework as well as experimental results, to attest the benefit of using multi-objective approaches for clustering.
引用
收藏
页码:293 / 305
页数:13
相关论文
共 50 条
  • [1] Scientific document summarization in multi-objective clustering framework
    Santosh Kumar Mishra
    Naveen Saini
    Sriparna Saha
    Pushpak Bhattacharyya
    [J]. Applied Intelligence, 2022, 52 : 1520 - 1543
  • [2] Scientific document summarization in multi-objective clustering framework
    Mishra, Santosh Kumar
    Saini, Naveen
    Saha, Sriparna
    Bhattacharyya, Pushpak
    [J]. APPLIED INTELLIGENCE, 2022, 52 (02) : 1520 - 1543
  • [3] An enriched game-theoretic framework for multi-objective clustering
    Badami, Mahsa
    Hamzeh, Ali
    Hashemi, Sattar
    [J]. APPLIED SOFT COMPUTING, 2013, 13 (04) : 1853 - 1868
  • [4] Multi-objective optimization (MO)
    Balling, RJ
    [J]. OPTIMAIZATION IN INDUSTRY, 2002, : 337 - 338
  • [5] MO-ParamILS: A Multi-objective Automatic Algorithm Configuration Framework
    Blot, Aymeric
    Hoos, Holger H.
    Jourdan, Laetitia
    Kessaci-Marmion, Marie-Eleonore
    Trautmann, Heike
    [J]. LEARNING AND INTELLIGENT OPTIMIZATION (LION 10), 2016, 10079 : 32 - 47
  • [6] Sophisticated SOM based genetic operators in multi-objective clustering framework
    Saini, Naveen
    Saha, Sriparna
    Harsh, Aditya
    Bhattacharyya, Pushpak
    [J]. APPLIED INTELLIGENCE, 2019, 49 (05) : 1803 - 1822
  • [7] Sophisticated SOM based genetic operators in multi-objective clustering framework
    Naveen Saini
    Sriparna Saha
    Aditya Harsh
    Pushpak Bhattacharyya
    [J]. Applied Intelligence, 2019, 49 : 1803 - 1822
  • [8] Differential evolution for multi-objective clustering
    Wang, Hui
    Zeng, Sanyou
    Chen, Liang
    Shi, Hui
    Zhang, Cheng
    [J]. PROGRESS IN INTELLIGENCE COMPUTATION AND APPLICATIONS, PROCEEDINGS, 2007, : 124 - 127
  • [9] Multi-objective frequent termset clustering
    Morik, Katharina
    Kaspari, Andreas
    Wurst, Michael
    Skirzynski, Marcin
    [J]. KNOWLEDGE AND INFORMATION SYSTEMS, 2012, 30 (03) : 715 - 738
  • [10] Multi-objective frequent termset clustering
    Katharina Morik
    Andreas Kaspari
    Michael Wurst
    Marcin Skirzynski
    [J]. Knowledge and Information Systems, 2012, 30 : 715 - 738