Towards automated diffraction tomography. Part II - Cell parameter determination

被引:230
|
作者
Kolb, U. [2 ]
Gorelik, T. [2 ]
Otten, M. T. [1 ]
机构
[1] FEI, Bldg AAE, NL-5600 KA Eindhoven, Netherlands
[2] Johannes Gutenberg Univ Mainz, Inst Phys Chem, D-55099 Mainz, Germany
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
electron diffraction; STEM; nanodiffraction; automation; tomography;
D O I
10.1016/j.ultramic.2007.12.002
中图分类号
TH742 [显微镜];
学科分类号
摘要
Automated diffraction tomography (ADT) allows the collection of three-dimensional (3d) diffraction data sets from crystals down to a size of only few nanometres. Imaging is done in STEM mode, and diffraction data are collected with quasi-parallel beam nanoelectron diffraction (NED). Here, we present a set of developed processing steps necessary for automatic unit-cell parameter determination from the collected 3d diffraction data. Cell parameter determination is done via extraction of peak positions from a recorded data set (called the data reduction path) followed by subsequent cluster analysis of difference vectors. The procedure of lattice parameter determination is presented in detail for a beam-sensitive organic material. Independently, we demonstrate a potential (called the full integration path) based on 3d reconstruction of the reciprocal space visualising special structural features of materials such as partial disorder. Furthermore, we describe new features implemented into the acquisition part. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:763 / 772
页数:10
相关论文
共 36 条
  • [1] Crystal structure determination using automated electron diffraction tomography.
    Oleynikov, Peter
    Ma, Yanhang
    Yoon, Kyung Byung
    Terasaki, Osamu
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2012, 68 : S59 - S59
  • [2] Towards automated diffraction tomography:: Part I -: Data acquisition
    Kolb, U.
    Gorelik, T.
    Kuebel, C.
    Otten, M. T.
    Hubert, D.
    ULTRAMICROSCOPY, 2007, 107 (6-7) : 507 - 513
  • [3] Improved assessment of mass concrete dams using acoustic travel time tomography. Part II - application
    Kepler, WF
    Bond, LJ
    Frangopol, DM
    CONSTRUCTION AND BUILDING MATERIALS, 2000, 14 (03) : 147 - 156
  • [5] ARTIFICIAL BOUNDARY CONDITIONS AND DOMAIN TRUNCATION IN ELECTRICAL IMPEDANCE TOMOGRAPHY. PART II: STOCHASTIC EXTENSION OF THE BOUNDARY MAP
    Calvetti, Daniela
    Hadwin, Paul J.
    Huttunen, Janne M. J.
    Kaipio, Jari P.
    Somersalo, Erkki
    INVERSE PROBLEMS AND IMAGING, 2015, 9 (03) : 767 - 789
  • [6] Design of a digital beam attenuation system for computed tomography. Part II. Performance study and initial results
    Szczykutowicz, Timothy P.
    Mistretta, Charles A.
    MEDICAL PHYSICS, 2013, 40 (02)
  • [7] Parameter determination for modeling system transients - Part II: Insulated cables
    Gustavsen, B
    Martinez, JA
    Durbak, D
    IEEE TRANSACTIONS ON POWER DELIVERY, 2005, 20 (03) : 2045 - 2050
  • [8] Determination of the crystal structures of silver hexafluorophosphate by neutron powder diffraction (Part II)
    Katayama, Y.
    KURRI Progress Report, 1995,
  • [9] Fast-ADT: A fast and automated electron diffraction tomography setup for structure determination and refinement
    Plana-Ruiz, S.
    Krysiak, Y.
    Portillo, J.
    Alig, E.
    Estrade, S.
    Peiro, F.
    Kolb, U.
    ULTRAMICROSCOPY, 2020, 211
  • [10] New developments in frequency domain optical tomography. Part II: Application with a L-BFGS associated to an inexact line search
    Balima, O.
    Boulanger, J.
    Charette, A.
    Marceau, D.
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2011, 112 (07): : 1235 - 1240