Discontinuous Galerkin methods for a contact problem with Tresca friction arising in linear elasticity

被引:4
|
作者
Porwal, Kamana [1 ,2 ]
机构
[1] Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
[2] Louisiana State Univ, Ctr Computat & Technol, Baton Rouge, LA 70803 USA
关键词
Finite element; Discontinuous Galerkin; A posteriori error estimate; Frictional contact problem; Variational inequalities; Linear elasticity; ELLIPTIC OBSTACLE PROBLEMS; FINITE-ELEMENT METHODS; POSTERIORI ERROR ESTIMATORS; VARIATIONAL-INEQUALITIES; RESIDUAL TYPE; APPROXIMATION;
D O I
10.1016/j.apnum.2016.10.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we propose and analyze discontinuous Galerkin (DG) methods for a contact problem with Tresca friction for the linearized elastic material. We derive a residual based a posteriori error estimator for the proposed class of DG methods. The reliability and the efficiency of a posteriori error estimator is shown. We further investigate a priori error estimates under the minimal regularity assumption on the exact solution. An important property shared by a class of DG methods, allow us to carry out the analysis in a unified framework. Numerical experiments are reported to illustrate theoretical results. (C) 2016 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:182 / 202
页数:21
相关论文
共 50 条
  • [1] Discontinuous Galerkin methods for non-linear elasticity
    Ten Eyck, A.
    Lew, A.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2006, 67 (09) : 1204 - 1243
  • [2] Discontinuous Galerkin methods for solving a quasistatic contact problem
    Fei Wang
    Weimin Han
    Xiaoliang Cheng
    Numerische Mathematik, 2014, 126 : 771 - 800
  • [3] Discontinuous Galerkin methods for solving a quasistatic contact problem
    Wang, Fei
    Han, Weimin
    Cheng, Xiaoliang
    NUMERISCHE MATHEMATIK, 2014, 126 (04) : 771 - 800
  • [4] A DECOMPOSITION METHOD FOR A UNILATERAL CONTACT PROBLEM WITH TRESCA FRICTION ARISING IN ELECTRO-ELASTOSTATICS
    Essoufi, E. -H.
    Fakhar, R.
    Koko, J.
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2015, 36 (12) : 1533 - 1558
  • [5] Discontinuous Galerkin finite element methods for linear elasticity and quasistatic linear viscoelasticity
    Rivière, B
    Shaw, S
    Wheeler, MF
    Whiteman, JR
    NUMERISCHE MATHEMATIK, 2003, 95 (02) : 347 - 376
  • [6] Discontinuous Galerkin finite element methods for linear elasticity and quasistatic linear viscoelasticity
    Béatrice Rivière
    Simon Shaw
    Mary F. Wheeler
    J.R. Whiteman
    Numerische Mathematik, 2003, 95 : 347 - 376
  • [7] Space-time discontinuous Galerkin method for the problem of linear elasticity
    Hadrava, Martin
    Feistauer, Miloslav
    Horáček, Jaromír
    Kosík, Adam
    Lecture Notes in Computational Science and Engineering, 2015, 103 : 115 - 123
  • [8] The element-free Galerkin method for a quasistatic contact problem with the Tresca friction in elastic materials
    Ding, Rui
    Shen, Quan
    Huo, Yuebin
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2021, 37 (01) : 69 - 97
  • [9] A posteriori error estimates for local discontinuous Galerkin methods of linear elasticity
    Chen, Yun-Cheng
    Huang, Jian-Guo
    Xu, Yi-Feng
    Shanghai Jiaotong Daxue Xuebao/Journal of Shanghai Jiaotong University, 2011, 45 (12): : 1857 - 1862
  • [10] A hybridizable discontinuous Galerkin method for linear elasticity
    Soon, S. -C.
    Cockburn, B.
    Stolarski, Henryk K.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2009, 80 (08) : 1058 - 1092