Thermal Hysteresis and Ordering Behavior of Magnetic Skyrmion Lattices

被引:14
|
作者
McCray, Arthur R. C. [1 ,2 ]
Li, Yue [1 ]
Basnet, Rabindra [3 ]
Pandey, Krishna [4 ]
Hu, Jin [3 ,4 ]
Phelan, Daniel P. [1 ]
Ma, Xuedan [5 ]
Petford-Long, Amanda K. [1 ,6 ]
Phatak, Charudatta [1 ]
机构
[1] Argonne Natl Lab, Mat Sci Div, Lemont, IL 60439 USA
[2] Northwestern Univ, Appl Phys Program, Evanston, IL 60208 USA
[3] Univ Arkansas, Dept Phys, Fayetteville, AR 72701 USA
[4] Univ Arkansas, Mat Sci & Engn Program, Fayetteville, AR 72701 USA
[5] Argonne Natl Lab, Ctr Nanoscale Mat, Lemont, IL 60439 USA
[6] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA
关键词
skyrmion lattice; Lorentz transmission electron microscopy; machine learning; thermal hysteresis; lattice order; MELTING TRANSITION;
D O I
10.1021/acs.nanolett.2c02275
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The physics of phase transitions in two-dimensional (2D) systems underpins research in diverse fields including statistical mechanics, nanomagnetism, and soft condensed matter. However, many aspects of 2D phase transitions are still not well understood, including the effects of interparticle potential, polydispersity, and particle shape. Magnetic skyrmions are chiral spin-structure quasi-particles that form two-dimensional lattices. Here, we show, by real-space imaging using in situ cryo-Lorentz transmission electron microscopy coupled with machine learning image analysis, the ordering behavior of Neel skyrmion lattices in van der Waals Fe3GeTe2. We demonstrate a distinct change in the skyrmion size distribution during field-cooling, which leads to a loss of lattice order and an evolution of the skyrmion liquid phase. Remarkably, the lattice order is restored during field heating and demonstrates a thermal hysteresis. This behavior is explained by the skyrmion energy landscape and demonstrates the potential to control the lattice order in 2D phase transitions.
引用
收藏
页码:7804 / 7810
页数:7
相关论文
共 50 条
  • [31] Geometric phase analysis of magnetic skyrmion lattices in Lorentz transmission electron microscopy images
    Denneulin, Thibaud
    Kovacs, Andras
    Boltje, Raluca
    Kiselev, Nikolai S.
    Dunin-Borkowski, Rafal E.
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [32] Observation of the magnetic flux and three-dimensional structure of skyrmion lattices by electron holography
    Hyun Soon Park
    Xiuzhen Yu
    Shinji Aizawa
    Toshiaki Tanigaki
    Tetsuya Akashi
    Yoshio Takahashi
    Tsuyoshi Matsuda
    Naoya Kanazawa
    Yoshinori Onose
    Daisuke Shindo
    Akira Tonomura
    Yoshinori Tokura
    Nature Nanotechnology, 2014, 9 : 337 - 342
  • [33] Topological thermal Hall effect of magnons in magnetic skyrmion lattice
    Akazawa, Masatoshi
    Lee, Hyun-Yong
    Takeda, Hikaru
    Fujima, Yuri
    Tokunaga, Yusuke
    Arima, Taka-hisa
    Han, Jung Hoon
    Yamashita, Minoru
    PHYSICAL REVIEW RESEARCH, 2022, 4 (04):
  • [34] Hysteretic behavior and magnetic ordering in CeRuSn
    Mydosh, J. A.
    Strydom, A. M.
    Baenitz, M.
    Chevalier, B.
    Hermes, W.
    Poettgen, R.
    PHYSICAL REVIEW B, 2011, 83 (05)
  • [35] Magnetocaloric behavior and magnetic ordering in MnPdGa
    Oey, Yuzki M.
    Kitchaev, Daniil A.
    Bocarsly, Joshua D.
    Schueller, Emily C.
    Cooley, Joya A.
    Seshadri, Ram
    PHYSICAL REVIEW MATERIALS, 2021, 5 (01)
  • [37] Magnetic hysteresis, compensation behaviors, and phase diagrams of bilayer honeycomb lattices
    Kantar, Ersin
    CHINESE PHYSICS B, 2015, 24 (10)
  • [38] Hysteresis-free voltage gating of the skyrmion
    Kasagawa, Mikito
    Miki, Soma
    Hashimoto, Ken Tanaka
    Shimmura, Akifumi
    Ishikawa, Ryo
    Shiota, Yoichi
    Goto, Minori
    Nomura, Hikaru
    Suzuki, Yoshishige
    APPLIED PHYSICS LETTERS, 2024, 124 (12)
  • [39] Hysteresis, spin transitions, and magnetic ordering in the fractional quantum Hall effect
    Cho, H
    Kang, W
    Campman, KL
    Gossard, AC
    Bichler, M
    Wegscheider, W
    PHYSICA E, 2000, 6 (1-4): : 18 - 21
  • [40] Skyrmion lattices in the BiFeO3 multiferroic
    A. N. Kalinkin
    V. M. Skorikov
    Inorganic Materials, 2011, 47 : 63 - 67