Deep Convolutional Neural Networks Based on Image Data Augmentation for Visual Object Recognition

被引:1
|
作者
Jayech, Khaoula [1 ]
机构
[1] Univ Sousse, Ecole Natl Ingn Sousse, LATIS Lab Adv Technol & Intelligent Syst, Sousse 4023, Tunisia
来源
INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING - IDEAL 2019, PT I | 2019年 / 11871卷
关键词
Deep learning; DCNN; Image data augmentation; Object recognition;
D O I
10.1007/978-3-030-33607-3_51
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep Neural Networks (DNNs) have achieved a great success in machine learning. Among a lot of DNN structures, Deep Convolutional Neural Networks (DCNNs) are currently the main tool in the state-of-the-art variety of classification tasks like visual object recognition and handwriting and speech recognition. Despite wide perspectives, DCNNs have still some challenges to deal with. In previous work, we demonstrated the effectiveness of using some regularization techniques such as the dropout to enhance the performance of DCNNs. However, DCNNs need enough training data or even a class balance within datasets to conduct better results. To resolve this problem, some researchers have evoked different data augmentation approaches. This paper presents an extension of a later study. In this work, we conducted and compared the results of many experiments on CIFAR-10, STL-10 and SVHN using variant techniques of data augmentation combined with regularization techniques. The analysis results show that with the right use of data augmentation approaches, it is possible to achieve good results and outperform the state-of-the-art in this field.
引用
收藏
页码:476 / 485
页数:10
相关论文
共 50 条
  • [1] Data Augmentation for EEG-Based Emotion Recognition with Deep Convolutional Neural Networks
    Wang, Fang
    Zhong, Sheng-hua
    Peng, Jianfeng
    Jiang, Jianmin
    Liu, Yan
    MULTIMEDIA MODELING, MMM 2018, PT II, 2018, 10705 : 82 - 93
  • [2] Deep Convolutional Neural Networks and Data Augmentation for Acoustic Event Recognition
    Takahashi, Naoya
    Gygli, Michael
    Pfister, Beat
    Van Goole, Luc
    17TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2016), VOLS 1-5: UNDERSTANDING SPEECH PROCESSING IN HUMANS AND MACHINES, 2016, : 2982 - 2986
  • [3] Image Augmentation-Based Food Recognition with Convolutional Neural Networks
    Pan, Lili
    Qin, Jiaohua
    Chen, Hao
    Xiang, Xuyu
    Li, Cong
    Chen, Ran
    CMC-COMPUTERS MATERIALS & CONTINUA, 2019, 59 (01): : 297 - 313
  • [4] Deep Learning based on Image Recognition Convolutional Neural Networks
    Alamri, Salah
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2022, 22 (04): : 559 - 566
  • [5] Underwater Image Classification Using Deep Convolutional Neural Networks and Data Augmentation
    Xu, Yifeng
    Zhang, Yang
    Wang, Huigang
    Liu, Xing
    2017 IEEE INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, COMMUNICATIONS AND COMPUTING (ICSPCC), 2017,
  • [6] DATA AUGMENTATION WITH GABOR FILTER IN DEEP CONVOLUTIONAL NEURAL NETWORKS FOR SAR TARGET RECOGNITION
    Jiang, Ting
    Cui, Zongyong
    Zhou, Zhi
    Cao, Zongjie
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 689 - 692
  • [7] STDP-based spiking deep convolutional neural networks for object recognition
    Kheradpisheh, Saeed Reza
    Ganjtabesh, Mohammad
    Thorpe, Simon J.
    Masquelier, Timothee
    NEURAL NETWORKS, 2018, 99 : 56 - 67
  • [8] Robustness of Deep Convolutional Neural Networks for Image Recognition
    Ulicny, Matej
    Lundstrom, Jens
    Byttner, Stefan
    INTELLIGENT COMPUTING SYSTEMS, 2016, 597 : 16 - 30
  • [9] Deep convolutional neural networks are not mechanistic explanations of object recognition
    Grujicic, Bojana
    SYNTHESE, 2024, 203 (01)
  • [10] Revisiting Deep Convolutional Neural Networks for RGB-D Based Object Recognition
    Madai-Tahy, Lorand
    Otte, Sebastian
    Hanten, Richard
    Zell, Andreas
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2016, PT II, 2016, 9887 : 29 - 37