Machine Learning with Enormous "Synthetic" Data Sets: Predicting Glass Transition Temperature of Polyimides Using Graph Convolutional Neural Networks

被引:24
|
作者
Volgin, Igor V. [1 ]
Batyr, Pavel A. [2 ,3 ]
Matseevich, Andrey V.
Dobrovskiy, Alexey Yu. [1 ]
Andreeva, Maria V. [1 ]
Nazarychev, Victor M. [1 ]
Larin, Sergey V. [1 ]
Goikhman, Mikhail Ya. [1 ]
Vizilter, Yury V. [2 ]
Askadskii, Andrey A. [3 ,4 ]
Lyulin, Sergey V. [1 ]
机构
[1] Russian Acad Sci IMC RAS, Inst Macromol Cpds, St Petersburg 199004, Russia
[2] State Res Inst Aviat Syst GosNIIAS, Fed State Unitary Enterprise, Moscow 125167, Russia
[3] Russian Acad Sci INEOS RAS, AN Nesmeyanov Inst Organoelement Cpds, Moscow 119991, Russia
[4] Moscow State Univ Civil Engn MGSU, Moscow 129337, Russia
来源
ACS OMEGA | 2022年 / 7卷 / 48期
基金
俄罗斯科学基金会;
关键词
MOLECULAR-DYNAMICS SIMULATIONS; UNIT STRUCTURE; POLYMERS; WEIGHT; OPPORTUNITIES; POLYSTYRENES; DEPENDENCE; DISCOVERY; ACRYLATE; DESIGN;
D O I
10.1021/acsomega.2c04649
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In the present work, we address the problem of utilizing machine learning (ML) methods to predict the thermal properties of polymers by establishing "structure-property" relationships. Having focused on a particular class of heterocyclic polymers, namely polyimides (PIs), we developed a graph convolutional neural network (GCNN), being one of the most promising tools for working with big data, to predict the PI glass transition temperature Tg as an example of the fundamental property of polymers. To train the GCNN, we propose an original methodology based on using a "transfer learning" approach with an enormous "synthetic" data set for pretraining and a small experimental data set for its fine-tuning. The "synthetic" data set contains more than 6 million combinatorically generated repeating units of PIs and theoretical values of their Tg values calculated using the well-established Askadskii's quantit ative structure-property relationship (QSPR) computational scheme. Additionally, an experimental data set for 214 PIs was also collected from the literature for training, fine-tuning, and validation of the GCNN. Both "synthetic" and experimental data sets are included into a PolyAskInG database (Polymer Askadskii's Intelligent Gateway). By using the PolyAskInG database, we developed GCNN which allows estimation of Tg of PI with a mean absolute error (MAE) of about 20 K, which is 1.5 times lower than in the case of Askadskii QSPR analysis (33 K). To prove the efficiency and usability of the proposed GCNN architecture and training methodology for predicting polymer properties, we also employed "transfer learning" to develop alternative GCNN pretrained on proxy-characteristics taken from the popular quantum chemical QM9 database for small compounds and fine-tuned on an experimental Tg values data set from PolyAskInG database. The obtained results indicate that pretraining of GCNN on the "synthetic" polymer data set provides MAE which is almost twice as low as that in the case of using the QM9 data set in the pretraining stage (similar to 41 K). Furthermore, we address the questions associated with the influence of the differences in the size of the experimental and "synthetic" data sets (so-called "reality gap" problem), as well as their chemical composition on the training quality. Our results state the overall priority of using polymer data sets for developing deep neural networks, and GCNN in particular, for efficient prediction of polymer properties. Moreover, our work opens up a challenge for the theoretically supported generation of large "synthetic" data sets of polymer properties for the training of the complex ML models. The proposed methodology is rather versatile and may be generalized for predicting other properties of different polymers and copolymers synthesized through the polycondensation reaction.
引用
收藏
页码:43678 / 43691
页数:14
相关论文
共 50 条
  • [1] Design of polyimides with targeted glass transition temperature using a graph neural network
    Qiu, Haoke
    Qiu, Xuepeng
    Dai, Xuemin
    Sun, Zhao-Yan
    JOURNAL OF MATERIALS CHEMISTRY C, 2023, 11 (08) : 2930 - 2940
  • [2] Prediction and Interpretability of Glass Transition Temperature of Homopolymers by Data-Augmented Graph Convolutional Neural Networks
    Hu, Junyang
    Li, Zean
    Lin, Jiaping
    Zhang, Liangshun
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (46) : 54006 - 54017
  • [3] Predicting glass transition temperatures using neural networks
    Cassar, Daniel R.
    de Carvalho, Andre C. P. L. F.
    Zanotto, Edgar D.
    ACTA MATERIALIA, 2018, 159 : 249 - 256
  • [4] A Machine Learning Framework for Predicting the Glass Transition Temperature of Homopolymers
    Nguyen, Tung
    Bavarian, Mona
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2022, 61 (34) : 12690 - 12698
  • [5] Machine learning approaches for predicting craniofacial anomalies with graph neural networks
    Alme, Colten
    Pirim, Harun
    Akbulut, Yusuf
    COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2025, 115
  • [6] Functional data learning using convolutional neural networks
    Galarza, J.
    Oraby, T.
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2024, 5 (01):
  • [7] Prediction of glass transition temperature of oxide glasses based on interpretable machine learning and sparse data sets
    Liu, Chengcheng
    Su, Hang
    MATERIALS TODAY COMMUNICATIONS, 2024, 40
  • [8] Predicting Critical Micelle Concentrations for Surfactants Using Graph Convolutional Neural Networks
    Qin, Shiyi
    Jin, Tianyi
    Van Lehn, Reid C.
    Zavala, Victor M.
    JOURNAL OF PHYSICAL CHEMISTRY B, 2021, 125 (37): : 10610 - 10620
  • [9] Reinforcement Learning using Physics Inspired Graph Convolutional Neural Networks
    Wu, Tong
    Scaglione, Anna
    Arnold, Daniel
    2022 58TH ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON), 2022,
  • [10] Generalizable Machine Learning in Neuroscience Using Graph Neural Networks
    Wang, Paul Y.
    Sapra, Sandalika
    George, Vivek Kurien
    Silva, Gabriel A.
    FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2021, 4