Application of Markov chains to identification of gas turbine engine dynamic models

被引:4
|
作者
Breikin, TV
Arkov, VY
Kulikov, GG
机构
[1] Univ Manchester, Dept Elect Engn & Elect, Control Syst Ctr, Manchester M60 1QD, Lancs, England
[2] Ufa State Aviat Tech Univ, Dept Automated Control Syst, Ufa 450000, Russia
基金
英国工程与自然科学研究理事会;
关键词
dynamic modelling; identification; real-time simulation;
D O I
10.1080/00207720600566065
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The paper addresses the practical problems of dynamic modelling of aero gas turbine engines for condition-monitoring purposes. The Markov chain technique is implemented to perform identification of the engine dynamic models using the engine normal flight data. This includes identifiability analysis and model estimation. When identifying the model, experimental data should be sufficiently informative for identification. A possible technique for identifiability analysis is proposed on the basis of non-parametric models in the form of controllable Markov chains. At the stage of the model estimation, Markov chains are introduced to provide more functionality and versatility for dynamic modelling of gas turbines.
引用
收藏
页码:197 / 205
页数:9
相关论文
共 50 条
  • [1] A New Approach to the Gray-Box Identification of Wiener Models With the Application of Gas Turbine Engine Modeling
    Mohammadi, Ehsan
    Montazeri-Gh, Morteza
    JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 2015, 137 (07):
  • [2] Gas Turbine Engine Condition Monitoring Using Gaussian Mixture and Hidden Markov Models
    Jacobs, William R.
    Edwards, Huw L.
    Li, Ping
    Kadirkamanathan, Visakan
    Mills, Andrew R.
    INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT, 2018, 9 (02)
  • [3] Identification of a class of nonlinear dynamic relationships: Application to the identification of engine emission models
    Alamir, Mazen
    Alberer, Daniel
    Del Re, Luigi
    INTERNATIONAL JOURNAL OF ENGINE RESEARCH, 2014, 15 (08) : 898 - 905
  • [4] Gas turbine engine dynamic model identification using spectral analysis for condition monitoring
    Arkov, VY
    Kulikov, GG
    MULTI-BODY DYNAMICS: MONITORING AND SIMULATION TECHNIQUES, 1997, : 123 - 131
  • [5] Dynamics of progress and application of mathematical models at different stages of gas turbine engine development
    Krivosheev, I.A.
    Akhmedzyanov, D.A.
    Ivanova, O.N.
    Izvestiya Vysshikh Uchebnykh Zavedenij. Aviatsionnaya Tekhnika, 2003, (03): : 71 - 74
  • [6] Markov models—Markov chains
    Jasleen K. Grewal
    Martin Krzywinski
    Naomi Altman
    Nature Methods, 2019, 16 : 663 - 664
  • [7] Identification method for nonlinear dynamic models of gas turbine engines on acceleration mode
    Lyantsev, O. D.
    Kazantsev, A. V.
    Abdulnagimov, A. I.
    PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON DYNAMICS AND VIBROACOUSTICS OF MACHINES (DVM2016), 2017, 176 : 409 - 415
  • [8] Gas turbine engine fault detection using Markov simulation technique
    Kulikov, GG
    Breikin, TV
    Arkov, VY
    Fleming, PJ
    INTERNATIONAL CONFERENCE ON SIMULATION '98, 1998, (457): : 69 - 72
  • [9] Dynamic modeling and control of a gas turbine propulsion engine
    Konyk, S
    Tolotta, V
    INTELLIGENT SHIPS SYMPOSIUM II - SYMPOSIUM PROCEEDINGS, 1996, : 3 - 8
  • [10] Description language for gas-turbine engine models
    Kozhinov, DG
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII AVIATSIONAYA TEKHNIKA, 1999, (02): : 75 - 76