DFT study of In2O3-catalyzed methanol synthesis from CO2 and CO hydrogenation on the defective site

被引:40
|
作者
Dou, Maobin [1 ,2 ]
Zhang, Minhua [1 ,2 ]
Chen, Yifei [1 ,2 ]
Yu, Yingzhe [1 ,2 ]
机构
[1] Tianjin Univ, R&D Ctr Petrochem Technol, Minist Educ, Key Lab Green Chem Technol, Tianjin 300072, Peoples R China
[2] Collaborat Innovat Ctr Chem Sci & Engn Tianjin, Tianjin 300072, Peoples R China
基金
美国国家科学基金会;
关键词
WATER-GAS SHIFT; CARBON-DIOXIDE; INDIUM OXIDE; IN2O3(110); CATALYSTS; PD;
D O I
10.1039/c7nj04273f
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Research on the mechanism of methanol synthesis from CO2 hydrogenation on the defective surface of In2O3 catalyst plays a pivotal role in the promotion of its catalytic performance and the catalytic conversion of CO2. Methanol synthesis from the hydrogenation of CO2 and CO on the vacancy site, consisting of O-v1 and O-v2, of the defective In2O3(110) surface (D surface) has been studied using the density functional theory method in the present work. The calculated results indicate that the HCOO route and RWGS route both are possible reaction pathways for methanol synthesis on the D surface. In the HCOO route, the reaction of p-HCOO with the surface H atom to form H2COO species is the rate-determining step, with an activation barrier of 1.25 eV. In the RWGS route, the dissociation of CO2 to CO on the D surface with a barrier of 0.99 eV is the rate-determining step for methanol synthesis. The hydrogenation of CO and HCO species on the D surface both are kinetically and energetically favorable.
引用
收藏
页码:3293 / 3300
页数:8
相关论文
共 50 条
  • [1] Cr as a promoter for the In2O3-catalyzed hydrogenation of CO2 to methanol
    Liu, Liang
    Cannizzaro, Francesco
    Kaychouhi, Anouar
    Kosinov, Nikolay
    Hensen, Emiel J. M.
    CHEMICAL ENGINEERING JOURNAL, 2024, 494
  • [2] Active Oxygen Vacancy Site for Methanol Synthesis from CO2 Hydrogenation on In2O3(110): A DFT Study
    Ye, Jingyun
    Liu, Changjun
    Mei, Donghai
    Ge, Qingfeng
    ACS CATALYSIS, 2013, 3 (06): : 1296 - 1306
  • [3] Flame Spray Pyrolysis as a Synthesis Platform to Assess Metal Promotion in In2O3-Catalyzed CO2 Hydrogenation
    Pinheiro Araujo, Thaylan
    Morales-Vidal, Jordi
    Zou, Tangsheng
    Garcia-Muelas, Rodrigo
    Willi, Patrik O.
    Engel, Konstantin M.
    Safonova, Olga V.
    Faust Akl, Dario
    Krumeich, Frank
    Grass, Robert N.
    Mondelli, Cecilia
    Lopez, Nuria
    Perez-Ramirez, Javier
    ADVANCED ENERGY MATERIALS, 2022, 12 (14)
  • [4] A DFT Study of Methanol Synthesis from CO2 Hydrogenation on the Pd(111) Surface
    Zhang, Minhua
    Wu, Yufei
    Dou, Maobin
    Yu, Yingzhe
    CATALYSIS LETTERS, 2018, 148 (09) : 2935 - 2944
  • [5] A DFT study of methanol synthesis from CO2 hydrogenation on Cu/ZnO catalyst
    Wang, Xingzi
    Zhang, Hai
    Qin, Huang
    Wu, Kunming
    Wang, Kai
    Ma, Junfang
    Fan, Weidong
    FUEL, 2023, 346
  • [6] A DFT Study of Methanol Synthesis from CO2 Hydrogenation on the Pd(111) Surface
    Minhua Zhang
    Yufei Wu
    Maobin Dou
    Yingzhe Yu
    Catalysis Letters, 2018, 148 : 2935 - 2944
  • [7] Synthesis of methanol via CO2 hydrogenation catalyzed by La2O2CO3/Cu catalysts
    He, Jun
    Yu, Chenglong
    Zhao, Zhijuan
    Guan, Bo
    Zhang, Bin
    Zhang, Yanru
    Zhang, Longbo
    Wang, Yanyan
    Wang, Ying
    Wu, Yahui
    Guo, Jia
    Li, Yang
    Wu, Tianbin
    Qian, Qingli
    Wang, Hongxing
    Han, Buxing
    NANO RESEARCH, 2025, 18 (02)
  • [8] A DFT-based microkinetic study on methanol synthesis from CO2 hydrogenation over the In2O3 catalyst
    Zhou, Zhimin
    Qin, Bin
    Li, Shenggang
    Sun, Yuhan
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2021, 23 (03) : 1888 - 1895
  • [9] Methanol Synthesis from CO2 Hydrogenation
    Bowker, Michael
    CHEMCATCHEM, 2019, 11 (17) : 4238 - 4246
  • [10] Theoretical study of the promotional effect of ZrO2 on In2O3 catalyzed methanol synthesis from CO2 hydrogenation
    Zhang, Minhua
    Dou, Maobin
    Yu, Yingzhe
    APPLIED SURFACE SCIENCE, 2018, 433 : 780 - 789