Restoration of Magnetocardiography Signal Using Principal Component Analysis and Artificaial Neural Network

被引:0
|
作者
Ahn, C. B. [1 ]
Lim, H. J. [1 ]
Kang, S. W. [1 ]
Park, H. C. [1 ]
Sohn, C. B. [1 ]
Oh, S. J. [1 ]
机构
[1] Kwangwoon Univ, VIA Multimedia Ctr, Seoul, South Korea
关键词
Principal component analysis; Artificial neural network; Magnetocardiography; Restoration;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Magnetocardiogram (MCG) is a biomagnetic field that is produced by cardiac electrical activity. The MCG signal can be measured with the use of a superconducting quantum interference device (SQUID). A two-dimensional map, MCG topography, can be obtained from multi-channel MCG sensors. In this paper, principal component analysis (PCA) combined with an artificial neural network (ANN) is proposed to remove a pulse-type artifact in the MCG signals. The algorithm is composed of a PCA module which decomposes the obtained signal into its principal components, followed by an ANN module for the classification of the components automatically. In the experiments with volunteer subjects, 97% of the decisions that were made by the ANN were identical to those by the human experts. After classification, the signal was restored through the reconstruction of the components that belong to the signal class. Using the proposed technique, the artifact was successfully removed from the MCG signal.
引用
收藏
页码:1045 / 1047
页数:3
相关论文
共 50 条
  • [1] Principal component analysis using neural network
    Jian-gang Yang
    Bin-qiang Sun
    Journal of Zhejiang University-SCIENCE A, 2002, 3 (3): : 298 - 304
  • [2] Principal component analysis using neural network
    Yang, Jian-Gang
    Sun, Bin-Qiang
    Journal of Zhejinag University: Science, 2002, 3 (03): : 298 - 304
  • [3] EEG Signal Classification using Principal Component Analysis and Wavelet Transform with Neural Network
    Lekshmi, S. S.
    Selvam, V.
    Rajasekaran, M. Pallikonda
    2014 INTERNATIONAL CONFERENCE ON COMMUNICATIONS AND SIGNAL PROCESSING (ICCSP), 2014,
  • [4] Principal component analysis using neural network附视频
    杨建刚
    孙斌强
    Journal of Zhejiang University Science, 2002, (03) : 49 - 55
  • [5] Principal component analysis of multispectral images using neural network
    Chitroub, S
    Houacine, A
    Sansal, B
    ACS/IEEE INTERNATIONAL CONFERENCE ON COMPUTER SYSTEMS AND APPLICATIONS, PROCEEDINGS, 2001, : 89 - 95
  • [6] Analyzing the structure of a neural network using Principal Component Analysis
    Opitz, DW
    1997 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS, VOLS 1-4, 1997, : 254 - 259
  • [7] EEG Signal Classification using Principal Component Analysis with Neural Network in Brain Computer Interface Applications
    Kottaimalai, R.
    Rajasekaran, Pallikonda M.
    Selvam, V
    Kannapiran, B.
    2013 IEEE INTERNATIONAL CONFERENCE ON EMERGING TRENDS IN COMPUTING, COMMUNICATION AND NANOTECHNOLOGY (ICE-CCN'13), 2013, : 227 - 231
  • [8] Neural Network Principal Component using adaptive principal component extractor (APEX)
    Ali, AH
    CIMSA'03: 2003 IEEE INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE FOR MEASUREMENT SYSTEMS AND APPLICATIONS, 2003, : 101 - 106
  • [9] Data Assimilation Using Principal Component Analysis and Artificial Neural Network
    Maschio, Celio
    Avansi, Guilherme Daniel
    Schiozer, Denis Jose
    SPE RESERVOIR EVALUATION & ENGINEERING, 2023, 26 (03) : 795 - 812
  • [10] Data Assimilation Using Principal Component Analysis and Artificial Neural Network
    Maschio C.
    Avansi G.D.
    Schiozer D.J.
    SPE Reservoir Evaluation and Engineering, 2023, 26 (03): : 795 - 812