General Relativistic Elasticity: Statics and Dynamics of Spherically Symmetric Metrics

被引:0
|
作者
Brito, Irene [1 ]
Vaz, E. G. L. R. [1 ]
机构
[1] Univ Minho, Dept Matemat Ciencia & Tecnol, P-4800058 Guimaraes, Portugal
来源
关键词
FOUNDATIONS;
D O I
10.1007/978-3-642-14788-3_17
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An introduction is provided to the theory of elasticity in general relativity. Important tensors appearing in this context are presented. In particular, attention is focussed on the elasticity difference tensor, for which an algebraic analysis is performed. Applications are given to static and non-static spherically symmetric configurations. For the latter, dynamical equations are obtained characterizing the space-title in the context of general relativistic elasticity.
引用
收藏
页码:237 / 241
页数:5
相关论文
共 50 条
  • [1] Dynamics of General Relativistic Spherically Symmetric Dust Thick Shells
    S. Khakshournia
    R. Mansouri
    General Relativity and Gravitation, 2002, 34 : 1847 - 1853
  • [2] Dynamics of general relativistic spherically symmetric dust thick shells
    Khakshournia, S
    Mansouri, R
    GENERAL RELATIVITY AND GRAVITATION, 2002, 34 (11) : 1847 - 1853
  • [3] The static spherically symmetric body in relativistic elasticity
    Frauendiener, Jorg
    Kabobel, Alexander
    CLASSICAL AND QUANTUM GRAVITY, 2007, 24 (18) : 4817 - 4837
  • [4] Spherically symmetric N-body simulations with general relativistic dynamics
    Adamek, Julian
    Gosenca, Mateja
    Hotchkiss, Shaun
    PHYSICAL REVIEW D, 2016, 93 (02)
  • [5] Dually flat general spherically symmetric Finsler metrics
    Xiaoming Wang
    Wangfu Liu
    Benling Li
    Science China Mathematics, 2018, 61 (04) : 769 - 782
  • [6] Dually flat general spherically symmetric Finsler metrics
    Xiaoming Wang
    Wangfu Liu
    Benling Li
    Science China Mathematics, 2018, 61 : 769 - 782
  • [7] Reconstructing static spherically symmetric metrics in general relativity
    Carloni, Sante
    PHYSICAL REVIEW D, 2014, 90 (04)
  • [8] Dually flat general spherically symmetric Finsler metrics
    Wang, Xiaoming
    Liu, Wangfu
    Li, Benling
    SCIENCE CHINA-MATHEMATICS, 2018, 61 (04) : 769 - 782
  • [9] A new spherically symmetric general relativistic hydrodynamical code
    Romero, JV
    Ibanez, JM
    Marti, JM
    Miralles, JA
    ASTROPHYSICAL JOURNAL, 1996, 462 (02): : 839 - 854
  • [10] A New Spherically Symmetric General Relativistic Hydrodynamical Code
    Romero, J. V.
    IbaOez, J. M.
    Marti, J. M.
    Miralles, J. A.
    Astrophysical Journal, 462 (01):