Nonequilibrium self-assembly of metals on diblock copolymer templates

被引:74
|
作者
Lopes, WA
机构
[1] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA
[2] Univ Chicago, Dept Phys, Chicago, IL 60637 USA
来源
PHYSICAL REVIEW E | 2002年 / 65卷 / 03期
关键词
D O I
10.1103/PhysRevE.65.031606
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Most studies of self-assembled systems reveal that the highest order is associated with equilibrium states of the system. By systematically studying metal decoration of diblock copolymer templates, I show that a high degree of order can arise under strongly nonequilibrium conditions. Under a wide range of conditions, thermally evaporated gold decorates ultrathin, asymmetric, polystyrene-b-polymethylmethacrylate diblock copolymer films with isolated nanoparticles. These particles aggregate into nanoparticle chains inside the polystyrene block with a selectivity approaching 100%. However, even at metal loading fractions of up to 30% by volume no coalescence into continuous nanowires is observed. This behavior is also shared by indium, tin, lead, bismuth, and silver at low coverage (<30 angstrom nominal thickness). At high coverage (>100 Angstrom nominal thickness), however, silver self-assembles to form nanowires. One can understand the formation of the chains of nanoparticles by understanding the equilibrium state of the system (metal+polymer). The silver nanowires are highly nonequilibrium structures and, to the best of my knowledge, unexplained by existing theoretical models. Assuming an energy difference for metallic particles for either side of the diblock, a mobility difference, and an attractive interaction between metallic particles, I modeled the self-assembly of the nanowires with a Monte Carlo simulation. This Monte Carlo simulation qualitatively agrees with the formation of the silver nanowires and their relaxation to equilibrium upon moderate heating.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Kinetic self-assembly of metals on copolymer templates
    Gopinathan, A
    PHYSICAL REVIEW E, 2005, 71 (04):
  • [2] Self-Assembly of Rod-Shaped Particles in Diblock-Copolymer Templates
    Tang, Qi-yun
    Ma, Yu-qiang
    JOURNAL OF PHYSICAL CHEMISTRY B, 2009, 113 (30): : 10117 - 10120
  • [3] Athermal models for diblock copolymer self-assembly
    Hansen, Jean-Pierre
    Pearson, Chris
    MOLECULAR PHYSICS, 2006, 104 (22-24) : 3389 - 3397
  • [4] Self-assembly in mixtures of diblock copolymer and homopolymer
    Takenaka, M
    Iizuka, N
    Hasegawa, H
    Hashimoto, T
    JAPAN INSTITUTE OF METALS, PROCEEDINGS, VOL 12, (JIMIC-3), PTS 1 AND 2: SOLID - SOLID PHASE TRANSFORMATIONS, 1999, : 93 - 96
  • [5] Self-Assembly of Diblock Copolymer on Substrates Modified by Random Copolymer Brushes
    Trombly, David M.
    Pryamitsyn, Victor
    Ganesan, Venkat
    MACROMOLECULES, 2011, 44 (24) : 9867 - 9881
  • [6] Self-assembly of silver nanoclusters on triblock copolymer templates
    Shi, ZT
    Han, M
    Zhao, SF
    Zhang, L
    Li, XF
    Wan, HG
    Wang, GH
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2005, 19 (15-17): : 2792 - 2797
  • [7] Self-assembly of Protein Nanoarrays on Block Copolymer Templates
    Lau, K. H. Aaron
    Bang, Joona
    Kim, Dong Ha
    Knoll, Wolfgang
    ADVANCED FUNCTIONAL MATERIALS, 2008, 18 (20) : 3148 - 3157
  • [8] Self-assembly behaviour of diblock copolymer-diblock copolymer under oscillating shear field
    Guo, Y.
    He, H.
    Fu, X.
    CONDENSED MATTER PHYSICS, 2024, 27 (02)
  • [9] Hierarchical self-assembly of metal nanostructures on diblock copolymer scaffolds
    Ward A. Lopes
    Heinrich M. Jaeger
    Nature, 2001, 414 : 735 - 738
  • [10] Unique aqueous self-assembly behavior of a thermoresponsive diblock copolymer
    Byard, Sarah J.
    O'Brien, Cate T.
    Derry, Matthew J.
    Williams, Mark
    Mykhaylyk, Oleksandr O.
    Blanazs, Adam
    Armes, Steven P.
    CHEMICAL SCIENCE, 2020, 11 (02) : 396 - 402