Annotation Technique for Health-Related Tweets Sentiment Analysis

被引:0
|
作者
Baccouche, Asma [1 ]
Garcia-Zapirain, Begonya [2 ]
Elmaghraby, Adel [1 ]
机构
[1] Univ Louisville, Comp Engn & Comp Sci, Louisville, KY 40292 USA
[2] Univ Deusto, eVida Lab, Bilbao, Spain
关键词
Text Analysis; Twitter; Sentiment Analysis; Deep Learning; Automatic Annotation;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This paper introduces a novel implementation of an automatic labeling technique, oriented to health related Twitter annotation for three languages: English, French, and Arabic. Thus, sentiment analysis is performed. The presented technique relies on data preprocessing, allowing for automatic tweets annotation based on domain knowledge, Natural Language Processing (NLP), and sentiment-lexicon dictionaries. In order to conduct our experiments, we use Deep Learning technique for sentiment prediction. In particular, we implement a Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), and Long Short-Term Memory (LSTM). In training the model, we include both a domain-specific private dataset and a non-specific domain public dataset containing users' large reviews from Amazon, IMDB and Yelp, and an Arabic Sentiment Tweets Dataset (ASTD). Our overall performance evaluation shows that LSTM-RNN outperforms the literature's review for both English and Arabic datasets. It achieves an accuracy of 0.98, an F1-Score of 0.97, a precision of 0.98 and a recall of 0.97 on the English Twitter dataset; an accuracy of 0.92, an F1-Score of 0.91, a precision of 0.89 and a recall of 0.93 on the French Twitter dataset; and an accuracy of 0.83, an F1-Score of 0.82, a precision of 0.87 and a recall of 0.79 on the Arabic Twitter dataset.
引用
收藏
页码:382 / 387
页数:6
相关论文
共 50 条
  • [1] Stance and Sentiment Analysis of Health-related Tweets with Data Augmentation
    Kucuk, Dogan
    Arici, Nursal
    [J]. JOURNAL OF SCIENTIFIC & INDUSTRIAL RESEARCH, 2024, 83 (04): : 381 - 391
  • [2] Annotation of a Corpus of Tweets for Sentiment Analysis
    dos Santos, Allisfrank
    Barros Junior, Jorge Daniel
    Camargo, Heloisa de Arruda
    [J]. COMPUTATIONAL PROCESSING OF THE PORTUGUESE LANGUAGE, PROPOR 2018, 2018, 11122 : 294 - 302
  • [3] Are Health-Related Tweets Evidence Based? Review and Analysis of Health-Related Tweets on Twitter
    Alnemer, Khalid A.
    Alhuzaim, Waleed M.
    Alnemer, Ahmed A.
    Alharbi, Bader B.
    Bawazir, Abdulrahman S.
    Barayyan, Omar R.
    Balaraj, Faisal K.
    [J]. JOURNAL OF MEDICAL INTERNET RESEARCH, 2015, 17 (10)
  • [4] Sentiment Analysis on Tweets
    Khatoon, Mehjabin
    Banu, W. Aisha
    Zohra, A. Ayesha
    Chinthamani, S.
    [J]. SOFTWARE ENGINEERING (CSI 2015), 2019, 731 : 717 - 724
  • [5] Mental health-related tweets associated with crisis referrals
    不详
    [J]. MEDICAL JOURNAL OF AUSTRALIA, 2020, 212 (04) : 148 - 148
  • [6] Sentiment Analysis of Public Social Media as a Tool for Health-Related Topics
    Arias, Fernando
    Nunez, Maytee Zambrano
    Guerra-Adames, Ariel
    Tejedor-Flores, Nathalia
    Vargas-Lombardo, Miguel
    [J]. IEEE ACCESS, 2022, 10 : 74850 - 74872
  • [7] Sentiment Analysis on Tweets related to infectious diseases in South America
    Antonio Garcia-Diaz, Jose
    Apolinario-Arzube, Oscar
    Medina-Moreira, Jose
    Luna-Aveiga, Harry
    Lagos-Ortiz, Katty
    Valencia-Garcia, Rafael
    [J]. PROCEEDINGS OF THE EURO AMERICAN CONFERENCE ON TELEMATICS AND INFORMATION SYSTEMS (EATIS '18), 2018,
  • [8] IUDs in the Twittersphere: Sentiment Analysis of IUD-Related Tweets
    Jung, Christina
    Richter, Felix
    Lunde, Britt
    Chen, Katherine
    [J]. OBSTETRICS AND GYNECOLOGY, 2017, 129 : 67S - 67S
  • [9] Sentiment analysis of ISIS related Tweets using Absolute location
    Mirani, Tarun B.
    Sasi, Sreela
    [J]. 2016 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE & COMPUTATIONAL INTELLIGENCE (CSCI), 2016, : 1140 - 1145
  • [10] Sentiment Analysis of Health Care Tweets: Review of the Methods Used
    Gohil, Sunir
    Vuik, Sabine
    Darzi, Ara
    [J]. JMIR PUBLIC HEALTH AND SURVEILLANCE, 2018, 4 (02): : 72 - 81