Annotation Technique for Health-Related Tweets Sentiment Analysis

被引:0
|
作者
Baccouche, Asma [1 ]
Garcia-Zapirain, Begonya [2 ]
Elmaghraby, Adel [1 ]
机构
[1] Univ Louisville, Comp Engn & Comp Sci, Louisville, KY 40292 USA
[2] Univ Deusto, eVida Lab, Bilbao, Spain
关键词
Text Analysis; Twitter; Sentiment Analysis; Deep Learning; Automatic Annotation;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This paper introduces a novel implementation of an automatic labeling technique, oriented to health related Twitter annotation for three languages: English, French, and Arabic. Thus, sentiment analysis is performed. The presented technique relies on data preprocessing, allowing for automatic tweets annotation based on domain knowledge, Natural Language Processing (NLP), and sentiment-lexicon dictionaries. In order to conduct our experiments, we use Deep Learning technique for sentiment prediction. In particular, we implement a Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), and Long Short-Term Memory (LSTM). In training the model, we include both a domain-specific private dataset and a non-specific domain public dataset containing users' large reviews from Amazon, IMDB and Yelp, and an Arabic Sentiment Tweets Dataset (ASTD). Our overall performance evaluation shows that LSTM-RNN outperforms the literature's review for both English and Arabic datasets. It achieves an accuracy of 0.98, an F1-Score of 0.97, a precision of 0.98 and a recall of 0.97 on the English Twitter dataset; an accuracy of 0.92, an F1-Score of 0.91, a precision of 0.89 and a recall of 0.93 on the French Twitter dataset; and an accuracy of 0.83, an F1-Score of 0.82, a precision of 0.87 and a recall of 0.79 on the Arabic Twitter dataset.
引用
收藏
页码:382 / 387
页数:6
相关论文
共 50 条
  • [1] Stance and Sentiment Analysis of Health-related Tweets with Data Augmentation
    Kucuk, Dogan
    Arici, Nursal
    JOURNAL OF SCIENTIFIC & INDUSTRIAL RESEARCH, 2024, 83 (04): : 381 - 391
  • [2] Annotation of a Corpus of Tweets for Sentiment Analysis
    dos Santos, Allisfrank
    Barros Junior, Jorge Daniel
    Camargo, Heloisa de Arruda
    COMPUTATIONAL PROCESSING OF THE PORTUGUESE LANGUAGE, PROPOR 2018, 2018, 11122 : 294 - 302
  • [3] Are Health-Related Tweets Evidence Based? Review and Analysis of Health-Related Tweets on Twitter
    Alnemer, Khalid A.
    Alhuzaim, Waleed M.
    Alnemer, Ahmed A.
    Alharbi, Bader B.
    Bawazir, Abdulrahman S.
    Barayyan, Omar R.
    Balaraj, Faisal K.
    JOURNAL OF MEDICAL INTERNET RESEARCH, 2015, 17 (10)
  • [4] Sentiment Analysis on Tweets
    Khatoon, Mehjabin
    Banu, W. Aisha
    Zohra, A. Ayesha
    Chinthamani, S.
    SOFTWARE ENGINEERING (CSI 2015), 2019, 731 : 717 - 724
  • [6] Sentiment Analysis of Public Social Media as a Tool for Health-Related Topics
    Arias, Fernando
    Nunez, Maytee Zambrano
    Guerra-Adames, Ariel
    Tejedor-Flores, Nathalia
    Vargas-Lombardo, Miguel
    IEEE ACCESS, 2022, 10 : 74850 - 74872
  • [7] Sentiment Analysis on Tweets related to infectious diseases in South America
    Antonio Garcia-Diaz, Jose
    Apolinario-Arzube, Oscar
    Medina-Moreira, Jose
    Luna-Aveiga, Harry
    Lagos-Ortiz, Katty
    Valencia-Garcia, Rafael
    PROCEEDINGS OF THE EURO AMERICAN CONFERENCE ON TELEMATICS AND INFORMATION SYSTEMS (EATIS '18), 2018,
  • [8] IUDs in the Twittersphere: Sentiment Analysis of IUD-Related Tweets
    Jung, Christina
    Richter, Felix
    Lunde, Britt
    Chen, Katherine
    OBSTETRICS AND GYNECOLOGY, 2017, 129 : 67S - 67S
  • [9] Sentiment analysis of ISIS related Tweets using Absolute location
    Mirani, Tarun B.
    Sasi, Sreela
    2016 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE & COMPUTATIONAL INTELLIGENCE (CSCI), 2016, : 1140 - 1145
  • [10] Sentiment Analysis of Health Care Tweets: Review of the Methods Used
    Gohil, Sunir
    Vuik, Sabine
    Darzi, Ara
    JMIR PUBLIC HEALTH AND SURVEILLANCE, 2018, 4 (02): : 72 - 81