Estimation of the entropy based on its polynomial representation

被引:18
|
作者
Vinck, Martin [1 ]
Battaglia, Francesco P. [1 ]
Balakirsky, Vladimir B. [2 ]
Vinck, A. J. Han [2 ]
Pennartz, Cyriel M. A. [1 ]
机构
[1] Univ Amsterdam, Ctr Neurosci, Cognit & Syst Neurosci Grp, NL-1012 WX Amsterdam, Netherlands
[2] Inst Expt Math, Essen, Germany
来源
PHYSICAL REVIEW E | 2012年 / 85卷 / 05期
关键词
INFORMATION-THEORY; BIAS;
D O I
10.1103/PhysRevE.85.051139
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Estimating entropy from empirical samples of finite size is of central importance for information theory as well as the analysis of complex statistical systems. Yet, this delicate task is marred by intrinsic statistical bias. Here we decompose the entropy function into a polynomial approximation function and a remainder function. The approximation function is based on a Taylor expansion of the logarithm. Given n observations, we give an unbiased, linear estimate of the first n power series terms based on counting sets of k coincidences. For the remainder function we use nonlinear Bayesian estimation with a nearly flat prior distribution on the entropy that was developed by Nemenman, Shafee, and Bialek. Our simulations show that the combined entropy estimator has reduced bias in comparison to other available estimators.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Estimation of the Entropy on the Basis of its Polynomial Representation
    Vinck, Martin
    Battaglia, Francesco P.
    Balakirsky, Vladimir B.
    Vinck, A. J. Han
    Pennartz, Cyriel
    2012 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2012,
  • [2] Nonlinearities in NARX polynomial models:: representation and estimation
    Aguirre, LA
    Corrêa, MV
    Cassini, CCS
    IEE PROCEEDINGS-CONTROL THEORY AND APPLICATIONS, 2002, 149 (04): : 343 - 348
  • [3] Polynomial volume estimation and its applications
    Cuevas, Antonio
    Pateiro-Lopez, Beatriz
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2018, 196 : 174 - 184
  • [4] A CLASS OF THE LIMIT DISTRIBUTIONS FOR THE STATISTICAL ESTIMATION OF THE ENTROPY IN POLYNOMIAL SCHEME
    AZLAROV, TA
    MUKHAMEDHANOVA, RI
    DOKLADY AKADEMII NAUK SSSR, 1982, 264 (04): : 777 - 780
  • [5] Implicit Polynomial Representation Through a Fast Fitting Error Estimation
    Rouhani, Mohammad
    Domingo Sappa, Angel
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2012, 21 (04) : 2089 - 2098
  • [6] On the Estimation of Tsallis Entropy and a Novel Information Measure Based on Its Properties
    Marti, Aniol
    de Cabrera, Ferran
    Riba, Jaume
    IEEE SIGNAL PROCESSING LETTERS, 2023, 30 : 818 - 822
  • [7] Fuzzy cumulative entropy and its estimation based on fuzzy random variables
    Hesamian, Gholamreza
    Akbari, Mohamad Ghasem
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2022, 53 (05) : 982 - 991
  • [8] Nonlinear Controller Design Based on Polynomial and Non-polynomial Representation
    Tsuge, Yuta
    Kawanishi, Michihiro
    Narikiyo, Tatsuo
    Jennawasin, Tanagorn
    11TH IEEE INTERNATIONAL CONFERENCE ON CONTROL AND AUTOMATION (ICCA), 2014, : 831 - 838
  • [9] ZEROS OF POLYNOMIAL AND AN ESTIMATION OF ITS ACCURACY.
    IGARASHI, MASAO
    1982, V 5 (N 3): : 172 - 175
  • [10] Optimal entropy estimation on large alphabets via best polynomial approximation
    Wu, Yihong
    Yang, Pengkun
    2015 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2015, : 824 - 828