Brain Lesion Segmentation of Diffusion-Weighted MRI Using Thresholding Technique

被引:0
|
作者
Saad, N. Mohd [1 ]
Salahuddin, L. [1 ]
Abu-Bakar, S. A. R. [2 ]
Muda, S. [3 ]
Mokji, M. M. [2 ]
机构
[1] Univ Teknikal Malaysia Melaka, Fac Elect & Comp Engn, Melaka, Malaysia
[2] Univ Teknol Malaysia, Fac Elect Engn, Bangi, Malaysia
[3] Univ Kebangsaan Malaysia, Med Ctr, Dept Radiol, Bangi 43600, Malaysia
关键词
DWI; segmentation; thresholding; Gamma-law and contrast stretching;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
This paper presents brain lesion segmentation of diffusion-weighted magnetic resonance images (DW-MRI or DWI) based on thresholding technique. The lesions are solid tumor, acute infarction, haemorrhage, and abscess. Preprocessing is applied to the DWI for normalization, background removal and enhancement. Two different techniques which are Gamma-law transformation and contrast stretching are applied for the enhancement. For the image segmentation process, the DWI is divided by 8 x 8 regions. Then image histogram is calculated at each region to find the maximum number of pixels for each intensity level. The optimal threshold is determined by comparing normal and lesion regions. By using Gamma-law transformation, 0.48 is found as the optimal thresholding value whereas 0.28 for the contrast stretching. The proposed technique has been validated by using area overlap (AO), false positive rate (FPR), and false negative rate (FNR). Thresholding with gamma-law transformation algorithm provides better segmentation results compared to contrast stretching technique. The proposed technique provides good brain lesion segmentation results even though the simplest segmentation technique is used.
引用
收藏
页码:604 / +
页数:2
相关论文
共 50 条
  • [1] Automated Region Growing for Segmentation of Brain Lesion in Diffusion-weighted MRI
    Saad, N. Mohd
    Abu-Bakar, S. A. R.
    Muda, Sobri
    Mokji, M.
    Abdullah, A. R.
    INTERNATIONAL MULTICONFERENCE OF ENGINEERS AND COMPUTER SCIENTISTS, IMECS 2012, VOL I, 2012, : 674 - 677
  • [2] EARLY DETECTION OF CEREBRAL ISCHEMIC LESION USING DIFFUSION-WEIGHTED MRI
    KOHNO, K
    OHTA, S
    KOHNO, K
    KUMON, Y
    SAKAKI, S
    OKUJIMA, S
    JOURNAL OF COMPUTER ASSISTED TOMOGRAPHY, 1995, 19 (06) : 982 - 986
  • [3] Increase Lesion Detection and Characterization Using Diffusion-Weighted Body MRI
    Attariwala, R.
    Picker, W.
    AMERICAN JOURNAL OF ROENTGENOLOGY, 2012, 198 (05)
  • [4] Early detection of cerebral ischemic lesion using diffusion-weighted MRI
    Kohno, K., 1600, Lippincott Williams and Wilkins (19):
  • [5] Integration of Fuzzy C-Means with Correlation Template and Active Contour for Brain Lesion Segmentation in Diffusion-Weighted MRI
    Muda, Ayuni Fateeha
    Saad, Norhashimah Mohd
    Waeleh, Nazreen
    Abdullah, Abdul Rahim
    Fen, Low Yin
    2015 THIRD INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE, MODELLING AND SIMULATION (AIMS 2015), 2015, : 268 - 273
  • [6] Ex-Vivo Hippocampus Segmentation Using Diffusion-Weighted MRI
    Tang, Haoteng
    Dai, Siyuan
    Zou, Eric M.
    Liu, Guodong
    Ahearn, Ryan
    Krafty, Ryan
    Modo, Michel
    Zhan, Liang
    MATHEMATICS, 2024, 12 (07)
  • [7] Diffusion-weighted MRI: An ECG for ''brain attack''
    Koroshetz, WJ
    Gonzalez, G
    ANNALS OF NEUROLOGY, 1997, 41 (05) : 565 - 566
  • [8] AUTOMATIC SEGMENTATION OF FETAL BRAIN USING DIFFUSION-WEIGHTED IMAGING CUES
    Shishegar, Rosita
    Joshi, Anand A.
    Tolcos, Mary
    Walker, David W.
    Johnston, Leigh A.
    2017 IEEE 14TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2017), 2017, : 804 - 807
  • [9] Reversible hyperintensity lesion on diffusion-weighted MRI in hypoglycemic coma
    Aoki, T
    Sato, T
    Hasegawa, K
    Ishizaki, R
    Saiki, M
    NEUROLOGY, 2004, 63 (02) : 392 - 393
  • [10] In vivo diffusion-weighted MRI of the breast: Potential for lesion characterization
    Sinha, S
    Lucas-Quesada, FA
    Sinha, U
    DeBruhl, N
    Bassett, LW
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2002, 15 (06) : 693 - 704