Efficient pH-gradient-enabled microscale bipolar interfaces in direct borohydride fuel cells

被引:73
|
作者
Wang, Zhongyang [1 ,2 ]
Parrondo, Javier [1 ,2 ]
He, Cheng [1 ,2 ]
Sankarasubramanian, Shrihari [1 ,2 ]
Ramani, Vijay [1 ,2 ]
机构
[1] Washington Univ, Ctr Solar Energy & Energy Storage, St Louis, MO 63130 USA
[2] Washington Univ, Dept Energy Environm & Chem Engn, McKelvey Sch Engn, St Louis, MO USA
关键词
SODIUM-BOROHYDRIDE; OXIDATION REACTION; ELECTROCHEMICAL OXIDATION; HYDROGEN EVOLUTION; EXCHANGE MEMBRANES; CATALYST SUPPORT; OXYGEN REDUCTION; ANODIC-OXIDATION; PERFORMANCE; AU;
D O I
10.1038/s41560-019-0330-5
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The disparate pH requirements for borohydride oxidation and peroxide reduction in direct borohydride fuel cells (DBFCs) currently hinder their performance and efficiency. Here we develop a pH-gradient-enabled microscale bipolar interface (PMBI) that facilitates sharply different local pH environments at the anode and cathode of a DBFC. Using a recessed planar electrode in conjunction with transmission electron microscopy, we show that the PMBI maintained a sharp local pH gradient (0.82 pH units nm(-1) on average) at the electrocatalytic reaction site. The PMBI configuration enabled enhanced performance in a DBFC compared with either all-anion-or all-cation-exchange configurations (330 mA cm(-2) at 1.5 V and a peak power density of 630 mW cm(-2) at 1.0 V, respectively). The high power densities obtained at voltages well above 1.0 V-achieved by virtue of the effective separation of anolyte and catholyte locally at the electrocatalytically active sites by the PMBI-provide a pathway to reduce fuel cell stack size for autonomous propulsion applications.
引用
收藏
页码:281 / 289
页数:9
相关论文
共 50 条
  • [1] Efficient pH-gradient-enabled microscale bipolar interfaces in direct borohydride fuel cells
    Zhongyang Wang
    Javier Parrondo
    Cheng He
    Shrihari Sankarasubramanian
    Vijay Ramani
    Nature Energy, 2019, 4 : 281 - 289
  • [2] Influence of Water Transport Across Microscale Bipolar Interfaces on the Performance of Direct Borohydride Fuel Cells
    Wang, Zhongyang
    Mandal, Mrinmay
    Sankarasubramanian, Shrihari
    Huang, Garrett
    Kohl, Paul A.
    Ramani, Vijay K.
    ACS APPLIED ENERGY MATERIALS, 2020, 3 (05) : 4449 - 4456
  • [3] Bipolar polymer electrolyte interfaces for hydrogen-oxygen and direct borohydride fuel cells
    Arges, Christopher G.
    Prabhakaran, Venkateshkumar
    Wang, Lihui
    Ramani, Vijay
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (26) : 14312 - 14321
  • [4] Bipolar Membranes for Direct Borohydride Fuel Cells-A Review
    Belhaj, Ines
    Faria, Monica
    Sljukic, Biljana
    Geraldes, Vitor
    Santos, Diogo M. F.
    MEMBRANES, 2023, 13 (08)
  • [5] Direct borohydride fuel cells
    de Leon, CP
    Walsh, FC
    Pletcher, D
    Browning, DJ
    Lakeman, JB
    JOURNAL OF POWER SOURCES, 2006, 155 (02) : 172 - 181
  • [6] Direct borohydride fuel cells
    Canter, Neil
    Tribology and Lubrication Technology, 2019, 75 (06): : 26 - 27
  • [7] A comparison of sodium borohydride as a fuel for proton exchange membrane fuel cells and for direct borohydride fuel cells
    Wee, JH
    JOURNAL OF POWER SOURCES, 2006, 155 (02) : 329 - 339
  • [8] An efficient NiFe binary alloy anode catalyst for direct borohydride fuel cells
    Yang, Ying
    Zhu, Xiaofei
    Yi, Caini
    Yang, Hang
    Hou, Xiaolong
    Liao, Xuan
    Chen, Changguo
    Yu, Danmei
    Zhou, Xiaoyuan
    CHEMICAL ENGINEERING JOURNAL, 2023, 472
  • [9] A short review on direct borohydride fuel cells
    Kiran, Vankayala
    Srinivasan, Sampath
    Journal of the Indian Institute of Science, 2009, 89 (04) : 447 - 454
  • [10] New electrocatalysts for direct borohydride fuel cells
    Tsivadze, A. Yu.
    Tarasevich, M. R.
    Titova, V. N.
    Yavich, A. A.
    Petrova, N. V.
    DOKLADY PHYSICAL CHEMISTRY, 2007, 414 (1) : 107 - 109