When a fault or a series of faults occur in a distribution network, it is of considerable significance to feeding loads, most importantly critical loads. Although network reconfiguration by switching operations has been usually considered as a relatively low-cost method for load restoration, it alone may not able to restore critical loads under extreme weather events such as hurricanes where multiple faults can happen within the network. Under such severe circumstances, one of the complementary methods for service restoration is benefiting from existing installed microgrids. In this paper, the idea of planning future microgrids-in terms of optimal location and capacity- in combination with switching operations to restore critical loads, for the first time, is considered. To this planning-operation concept end, a graph-theoretic method is developed to find optimal switching operations coupled with a heuristic optimization method developed to determine future microgrids' location and capacity to maximize the resiliency of the network while keeping the associated cost with distributed generations (DGs) in microgrids as low as possible. Simulations results on the modified IEEE 37-node distribution network show the effectiveness of the proposed idea. Moreover, using appropriate reduction techniques, the computational efficacy of the method has also been greatly improved.