The existence and uniqueness of the global solution for the viscoelastic-plate equation under nonlinear boundary conditions

被引:2
|
作者
Wang Dan-Xia [1 ]
Zhang Jian-Wen [1 ]
Wu Run-Heng [2 ]
机构
[1] Taiyuan Univ Technol, Coll Sci, Taiyuan 030024, Peoples R China
[2] N China Univ Technol, Coll Sci, Beijing 100041, Peoples R China
基金
中国国家自然科学基金;
关键词
viscoelastic-plate equation; initial boundary value problems; Galerkin method; global solution;
D O I
10.7498/aps.57.6741
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we consider the viscoelastic-plate equation under non-linear boundary conditions. Firstly, by the aid of Galerkin method, under non-linear boundary conditions (a) and the initial values w(0) is an element of W, and w(1) is an element of W, we prove the existence and uniqueness of a global weak solution w(t) for the initial boundary value problems. Secondly, under non-linear boundary conditions (b) and the initial values w(0) is an element of W, and w(1) is an element of W-1, the existence and uniqueness of a global weak solution w(t) is also proved by using Galerkin method.
引用
收藏
页码:6741 / 6750
页数:10
相关论文
共 10 条
  • [1] INITIAL-BOUNDARY VALUE-PROBLEMS FOR AN EXTENSIBLE BEAM
    BALL, JM
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1973, 42 (01) : 61 - 90
  • [2] BALL JM, 1973, J DIFFER EQUATIONS, V14, P463
  • [3] CIRO D, 2005, J MATH ANAL APPL, V312, P41
  • [4] DANIELA DB, 1994, MECH RES COMMUN, V21, P189
  • [5] HAN Q, 1997, J TAIYUAN U TECHNOLO, V28, P15
  • [6] HOLMES P, 1981, ARCH RATION MECH AN, V76, P135
  • [7] KARAGIOZON V, 1995, P PLAST, V95, P7
  • [8] CHAOTIC MOTION OF AN ELASTIC-PLASTIC BEAM
    PODDAR, B
    MOON, FC
    MUKHERJEE, S
    [J]. JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1988, 55 (01): : 185 - 189
  • [9] TO FM, 2001, MATH METHOD APPL SCI, V24, P583
  • [10] WOINOWSKYKRIEGER S, 1950, J APPL MECH-T ASME, V17, P35