Tunable Graphene do Superconducting Quantum Interference Device

被引:60
|
作者
Girit, Caglar [1 ,2 ]
Bouchiat, V. [4 ]
Naamanth, O. [1 ,3 ]
Zhang, Y. [1 ]
Crommie, M. F. [1 ,2 ]
Zetti, A. [1 ,2 ]
Siddiqi, I. [1 ,3 ]
机构
[1] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Quantum Nanoelect Lab, Berkeley, CA 94720 USA
[4] UJF, CNRS, Inst Neel, F-38042 Grenoble 9, France
关键词
D O I
10.1021/nl802765x
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Graphene exhibits unique electrical properties on account of its reduced dimensionality and "relativistic" band structure. When contacted with two superconducting electrodes, graphene can support Cooper pair transport, resulting in the well-known Josephson effect. We report here the fabrication and operation of a two junction do superconducting quantum interference device (SQUID) formed by a single graphene sheet contacted with aluminum/palladium electrodes in the geometry of a loop. The supercurrent in this device can be modulated not only via an electrostatic gate but also by an applied magnetic field-a potentially powerful probe of electronic transport in graphene and an ultrasensitive platform for nanomagnetometry.
引用
收藏
页码:198 / 199
页数:2
相关论文
共 50 条
  • [1] Tunable Superconducting Cavity using Superconducting Quantum Interference Device Metamaterials
    Kim, Samuel
    Shrekenhamer, David
    McElroy, Kyle
    Strikwerda, Andrew
    Alldredge, Jacob
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [2] Tunable Superconducting Cavity using Superconducting Quantum Interference Device Metamaterials
    Samuel Kim
    David Shrekenhamer
    Kyle McElroy
    Andrew Strikwerda
    Jacob Alldredge
    Scientific Reports, 9
  • [3] Highly Sensitive Tunable Magnetometer Based on Superconducting Quantum Interference Device
    Vettoliere, Antonio
    Granata, Carmine
    SENSORS, 2023, 23 (07)
  • [4] Superconducting quantum interference device readout circuit with tunable feedback polarity
    Wu, Xinyu
    Liu, Jianshe
    Chen, Wei
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2023, 94 (09):
  • [5] Holographic superconducting quantum interference device
    Takeuchi, Shingo
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2015, 30 (09):
  • [6] Silicon superconducting quantum interference device
    Duvauchelle, J. E.
    Francheteau, A.
    Marcenat, C.
    Chiodi, F.
    Debarre, D.
    Hasselbach, K.
    Kirtley, J. R.
    Lefloch, F.
    APPLIED PHYSICS LETTERS, 2015, 107 (07)
  • [7] The Diamond Superconducting Quantum Interference Device
    Mandal, Soumen
    Bautze, Tobias
    Williams, Oliver A.
    Naud, Cecile
    Bustarret, Etienne
    Omnes, Franck
    Rodiere, Pierre
    Meunier, Tristan
    Baeuerle, Christopher
    Saminadayar, Laurent
    ACS NANO, 2011, 5 (09) : 7144 - 7148
  • [8] Current-phase relation in graphene and application to a superconducting quantum interference device
    Girit, Caglar
    Bouchiat, Vincent
    Naaman, Ofer
    Zhang, Yuanbo
    Crommie, M. F.
    Zettl, A.
    Siddiqi, Irfan
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2009, 246 (11-12): : 2568 - 2571
  • [9] Nonlocal superconducting quantum interference device
    Noh, Taewan
    Kindseth, Andrew
    Chandrasekhar, Venkat
    PHYSICAL REVIEW B, 2021, 104 (06)
  • [10] DESIGN AND FABRICATION OF A MULTILOOP SUPERCONDUCTING QUANTUM INTERFERENCE DEVICE, THE CLOVER-LEAF SUPERCONDUCTING QUANTUM INTERFERENCE DEVICE
    MATSUDA, N
    UEHARA, G
    KAZAMI, K
    TAKADA, Y
    KADO, H
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS & EXPRESS LETTERS, 1995, 34 (1A): : L27 - L30