The numerical range of linear pencils of 2-by-2 matrices

被引:6
|
作者
Chien, MT [1 ]
Nakazato, H
机构
[1] Soochow Univ, Dept Math, Taipei 11102, Taiwan
[2] Hirosaki Univ, Dept Math Syst Sci, Fac Sci & Technol, Hirosaki, Aomori 0368561, Japan
关键词
numerical range; matrix polynomial; linear pencil; Jacobian method; Lagrange multiplier;
D O I
10.1016/S0024-3795(01)00292-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let A, B is an element of M-n. The numerical range of a linear pencil A lambda - B is defined by W(A lambda - B) = { t is an element of C : tw*Aw - w* Bw = 0 for some non-zero w is an element of C-n). The numerical range of a linear pencil of n-by-n matrices coincides with the union of the numerical ranges of linear pencils of 2-by-2 matrices. We emphasize on computation of the numerical range of linear pencils of 2-by-2 matrices. Let A, B is an element of M-2 with constant diagonals. We show that the boundary of W(A lambda - B) lies on a rational curve of degree at most 4. By using Lagrange's multiplier and implicit function, we describe the boundary of W(A; - B) for general 2-by-2 matices. (C) 2002 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:69 / 100
页数:32
相关论文
共 50 条
  • [1] Numerical range of linear pencils
    Psarrakos, PJ
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2000, 317 (1-3) : 127 - 141
  • [2] Generating curves of the inverse q-numerical ranges of 2-by-2 matrices
    Chien, Mao-Ting
    Nakazato, Hiroshi
    Moslehian, Mohammad Sal
    Zamani, Ali
    [J]. ARCHIV DER MATHEMATIK, 2020, 115 (06) : 667 - 677
  • [3] Generating curves of the inverse q-numerical ranges of 2-by-2 matrices
    Mao-Ting Chien
    Hiroshi Nakazato
    Mohammad Sal Moslehian
    Ali Zamani
    [J]. Archiv der Mathematik, 2020, 115 : 667 - 677
  • [4] Subspaces of the vector space of 2-by-2 matrices
    [J]. AMERICAN MATHEMATICAL MONTHLY, 2002, 109 (06): : 571 - 572
  • [5] PRODUCTS OF CONJUGACY CLASSES OF 2-BY-2 MATRICES
    VASERSTEIN, L
    WHELAND, E
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1995, 230 : 165 - 188
  • [6] NONFREE GROUPS GENERATED BY 2 2-BY-2 MATRICES
    BRENNER, JL
    MACLEOD, RA
    OLESKY, DD
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 21 (01): : A93 - A93
  • [7] Unitary congruence classes of 2-by-2 complex matrices
    Kh. D. Ikramov
    [J]. Doklady Mathematics, 2010, 81 : 171 - 175
  • [8] FERMAT'S EQUATION OVER 2-BY-2 MATRICES
    Chien, Mao-Ting
    Meng, Jie
    [J]. BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2021, 58 (03) : 609 - 616
  • [9] Unitary congruence classes of 2-by-2 complex matrices
    Ikramov, Kh. D.
    [J]. DOKLADY MATHEMATICS, 2010, 81 (02) : 171 - 175