Phase diagram of two-component dipolar fermions in one-dimensional optical lattices

被引:8
|
作者
De Silva, Theja N. [1 ]
机构
[1] SUNY Binghamton, Dept Phys Appl Phys & Astron, Binghamton, NY 13902 USA
关键词
LUTTINGER MODEL; HUBBARD-MODEL; GAS; SYSTEMS; ATOMS;
D O I
10.1016/j.physleta.2013.01.039
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We theoretically map out the ground state phase diagram of interacting dipolar fermions in one-dimensional lattice. Using a bosonization theory in the weak coupling limit at half filing, we show that one can construct a rich phase diagram by changing the angle between the lattice orientation and the polarization direction of the dipoles. In the strong coupling limit, at a general filing factor, we employ a variational approach and find that the emergence of a Wigner crystal phases. The structure factor provides clear signatures of the particle ordering in the Wigner crystal phases. (c) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:871 / 877
页数:7
相关论文
共 50 条
  • [1] RF dressing with two-component fermions in optical lattices
    Sebastian Scherg
    [J]. Nature Reviews Physics, 2021, 3 : 678 - 678
  • [2] RF dressing with two-component fermions in optical lattices
    Scherg, Sebastian
    [J]. NATURE REVIEWS PHYSICS, 2021, 3 (10) : 678 - 678
  • [3] Cooling schemes for two-component fermions in layered optical lattices
    Goto, Shimpei
    Danshita, Ippei
    [J]. PHYSICAL REVIEW A, 2017, 96 (06)
  • [4] Supersolids in confined fermions on one-dimensional optical lattices
    Pour, F. Karim
    Rigol, M.
    Wessel, S.
    Muramatsu, A.
    [J]. PHYSICAL REVIEW B, 2007, 75 (16):
  • [5] Phase diagram of imbalanced strongly interacting fermions on a one-dimensional optical lattice
    Anfossi, Alberto
    Barbiero, Luca
    Montorsi, Arianna
    [J]. PHYSICAL REVIEW A, 2009, 80 (04):
  • [6] The Anisotropy of Dipolar Condensate in One-Dimensional Optical Lattices
    Tie Lu
    Xue Ju-Kui
    [J]. CHINESE PHYSICS LETTERS, 2012, 29 (02)
  • [7] Phase diagram of Bose-Fermi mixtures in one-dimensional optical lattices
    Pollet, Lode
    Troyer, Matthias
    Van Houcke, Kris
    Rombouts, Stefan M. A.
    [J]. PHYSICAL REVIEW LETTERS, 2006, 96 (19)
  • [8] One-dimensional topological chains with Majorana fermions in two-dimensional nontopological optical lattices
    Jiang, Lei
    Qu, Chunlei
    Zhang, Chuanwei
    [J]. PHYSICAL REVIEW A, 2016, 93 (06)
  • [9] One-dimensional SU(N) clusters of fermions in optical lattices
    Gordillo, M. C.
    [J]. NEW JOURNAL OF PHYSICS, 2019, 21 (10):
  • [10] Compressibility and entropy of cold fermions in one-dimensional optical lattices
    Snyder, Andrew
    Tanabe, Iori
    De Silva, Theja
    [J]. PHYSICAL REVIEW A, 2011, 83 (06):