Measure of multipartite entanglement with computable lower bounds

被引:70
|
作者
Hong, Yan [1 ]
Gao, Ting [1 ]
Yan, Fengli [2 ]
机构
[1] Hebei Normal Univ, Coll Math & Informat Sci, Shijiazhuang 050024, Peoples R China
[2] Hebei Normal Univ, Coll Phys Sci & Informat Engn, Shijiazhuang 050024, Peoples R China
基金
中国国家自然科学基金;
关键词
QUANTUM INFORMATION; CRYPTOGRAPHY; STATE;
D O I
10.1103/PhysRevA.86.062323
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper, we present a measure of multipartite entanglement (k-nonseparable), k-ME concurrence Ck-ME(rho), that unambiguously detects all k-nonseparable states in arbitrary dimensions, where the special case 2-ME concurrence C2-ME(rho) is a measure of genuine multipartite entanglement. Themeasure k-MEconcurrence satisfies important characteristics of an entanglement measure, including the entanglement monotone, vanishing on k-separable states, convexity, subadditivity, and being strictly greater than zero for all k-nonseparable states. Two powerful lower bounds on this measure are given. These lower bounds are experimentally implementable without quantum state tomography and are easily computable as no optimization or eigenvalue evaluation is needed. We illustrate detailed examples in which the given bounds perform better than other known detection criteria. DOI: 10.1103/PhysRevA. 86.062323
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Measure of genuine multipartite entanglement with computable lower bounds
    Ma, Zhi-Hao
    Chen, Zhi-Hua
    Chen, Jing-Ling
    Spengler, Christoph
    Gabriel, Andreas
    Huber, Marcus
    PHYSICAL REVIEW A, 2011, 83 (06):
  • [2] Determining lower bounds on a measure of multipartite entanglement from few local observables
    Wu, Jun-Yi
    Kampermann, Hermann
    Bruss, Dagmar
    Kloeckl, Claude
    Huber, Marcus
    PHYSICAL REVIEW A, 2012, 86 (02):
  • [3] Computable lower bounds on the entanglement cost of quantum channels
    Lami, Ludovico
    Regula, Bartosz
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2023, 56 (03)
  • [4] A note on the lower bounds of genuine multipartite entanglement concurrence
    Li, Ming
    Dong, Yaru
    Zhang, Ruiqi
    Zhu, Xuena
    Shen, Shuqian
    Li, Lei
    Fei, Shao-Ming
    Quantum Information Processing, 2024, 23 (12)
  • [5] Improved lower bounds on genuine-multipartite-entanglement concurrence
    Chen, Zhi-Hua
    Ma, Zhi-Hao
    Chen, Jing-Ling
    Severini, Simone
    PHYSICAL REVIEW A, 2012, 85 (06):
  • [6] Multipartite entanglement measure
    Yu, CS
    Song, HS
    PHYSICAL REVIEW A, 2005, 71 (04):
  • [7] Computable measure of entanglement
    Vidal, G
    Werner, RF
    PHYSICAL REVIEW A, 2002, 65 (03): : 1 - 11
  • [8] Bounds on the multipartite entanglement of superpositions
    Song, Wei
    Liu, Nai-Le
    Chen, Zeng-Bing
    PHYSICAL REVIEW A, 2007, 76 (05):
  • [9] Two computable sets of multipartite entanglement measures
    Hiesmayr, Beatrix C.
    Huber, Marcus
    Krammer, Philipp
    PHYSICAL REVIEW A, 2009, 79 (06):
  • [10] Computable and Operationally Meaningful Multipartite Entanglement Measures
    Beckey, Jacob L.
    Gigena, N.
    Coles, Patrick J.
    Cerezo, M.
    PHYSICAL REVIEW LETTERS, 2021, 127 (14)