INTERIOR PENALTY DISCONTINUOUS GALERKIN FEM FOR THE p(x)-LAPLACIAN

被引:12
|
作者
Del Pezzo, Leandro M. [1 ]
Lombardi, Ariel L. [1 ,2 ]
Martinez, Sandra [1 ]
机构
[1] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Matemat, RA-1428 Buenos Aires, DF, Argentina
[2] Univ Nacl Gen Sarmiento, Inst Ciencias, Los Polvorines, Buenos Aires, Argentina
关键词
variable exponent spaces; minimization; discontinuous Galerkin; SOBOLEV SPACES; GENERALIZED LEBESGUE; VARIABLE EXPONENT; EMBEDDINGS;
D O I
10.1137/110820324
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we construct an "interior penalty" discontinuous Galerkin method to approximate the minimizer of a variational problem related to the p(x)-Laplacian. The function p : Omega -> [p1, p2] is log-Holder continuous and 1 < p(1) <= p(2) < infinity. We prove that the minimizers of the discrete functional converge to the solution. We also make some numerical experiments in dimension one to compare this method with the conforming Galerkin method, in the case where p(1) is close to one. This example is motivated by its applications to image processing.
引用
收藏
页码:2497 / 2521
页数:25
相关论文
共 50 条
  • [1] On the Suboptimality of the p-Version Interior Penalty Discontinuous Galerkin Method
    Emmanuil H. Georgoulis
    Edward Hall
    Jens Markus Melenk
    Journal of Scientific Computing, 2010, 42
  • [2] On the Suboptimality of the p-Version Interior Penalty Discontinuous Galerkin Method
    Georgoulis, Emmanuil H.
    Hall, Edward
    Melenk, Jens Markus
    JOURNAL OF SCIENTIFIC COMPUTING, 2010, 42 (01) : 54 - 67
  • [3] Robust Interior Penalty Discontinuous Galerkin Methods
    Dong, Zhaonan
    Georgoulis, Emmanuil H.
    JOURNAL OF SCIENTIFIC COMPUTING, 2022, 92 (02)
  • [4] Robust Interior Penalty Discontinuous Galerkin Methods
    Zhaonan Dong
    Emmanuil H. Georgoulis
    Journal of Scientific Computing, 2022, 92
  • [5] Stable Discontinuous Galerkin FEM Without Penalty Parameters
    John, Lorenz
    Neilan, Michael
    Smears, Iain
    NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS (ENUMATH 2015), 2016, 112 : 165 - 173
  • [6] A multilevel preconditioner for the interior penalty discontinuous Galerkin method
    Brix, Kolja
    Pinto, Martin Campos
    Dahmen, Wolfgang
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 46 (05) : 2742 - 2768
  • [7] CONVERGENCE ANALYSIS OF AN ADAPTIVE INTERIOR PENALTY DISCONTINUOUS GALERKIN METHOD
    Hoppe, R. H. W.
    Kanschat, G.
    Warburton, T.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 47 (01) : 534 - 550
  • [8] Interior penalty discontinuous Galerkin FEMs for a gradient beam and CNTs
    Eptaimeros, K. G.
    Koutsoumaris, C. Chr.
    Tsamasphyros, G. J.
    APPLIED NUMERICAL MATHEMATICS, 2019, 144 : 118 - 139
  • [9] Discrete maximum principle for interior penalty discontinuous Galerkin methods
    Horvath, Tamas L.
    Mincsovics, Miklos E.
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2013, 11 (04): : 664 - 679
  • [10] Interior penalty bilinear IFE discontinuous Galerkin methods for elliptic equations with discontinuous coefficient
    Xiaoming He
    Tao Lin
    Yanping Lin
    Journal of Systems Science and Complexity, 2010, 23 : 467 - 483