Fuzzy c-medoids Method based on JS']JS-divergence for Uncertain Data Clustering

被引:0
|
作者
Wang, Yingxu [1 ]
Dong, Jiwen [1 ]
Zhou, Jin [1 ]
Wang, Dong [1 ]
Wang, Lin [1 ]
Han, Shiyuan [1 ]
Chen, Yuehui [1 ]
机构
[1] Univ Jinan, Shandong Prov Key Lab Network Based Intelligent C, Jinan 250022, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
uncertain data clustering; !text type='JS']JS[!/text]-divergence; Fuzzy c-medoids method; ALGORITHM;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Uncertain data clustering is one significant research in data mining. Many similarity measurements of uncertain objects are proposed. Traditional clustering methods can be extended with these new similarity measurements. In this paper, we propose a new fuzzy c-medoids method for uncertain data clustering, named UFC-medoids. The JS-divergence is used as the similarity measurement between uncertain objects in this algorithm. In the experiments on synthetic datasets, the presented algorithm has shown a good performance.
引用
收藏
页码:312 / 315
页数:4
相关论文
共 50 条
  • [1] Spectral Clustering based on JS']JS-divergence for Uncertain Data
    Wang, Yingxu
    Dong, Jiwen
    Zhou, Jin
    Wang, Lin
    Han, Shiyuan
    Zhang, Tong
    Chen, C. L. Philip
    2017 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2017, : 1972 - 1975
  • [2] Linear Fuzzy Clustering of Relational Data Based on Extended Fuzzy c-Medoids
    Haga, Naoki
    Honda, Katsuhiro
    Ichihashi, Hidetomo
    Notsu, Akira
    2008 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-5, 2008, : 366 - 371
  • [3] Peak clustering algorithm for uncertain data density based on JS divergence
    Li, Song
    Liu, Xiao-Nan
    Liu, Juan
    Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2024, 54 (07): : 2038 - 2048
  • [4] K-medoids Method based on Divergence for Uncertain Data Clustering
    Zhou, Jin
    Pan, Yuqi
    Chen, C. L. Philip
    Wang, Dong
    Han, Shiyuan
    2016 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2016, : 2671 - 2674
  • [5] A Fuzzy c-Medoids Clustering Algorithm Based on Multiple Dissimilarity Matrices
    de Carvalho, Francisco de A. T.
    de Melo, Filipe M.
    Lechevallier, Yves
    2013 BRAZILIAN CONFERENCE ON INTELLIGENT SYSTEMS (BRACIS), 2013, : 107 - 112
  • [6] ACPJS']JS: An Anti-noise Concept Drift Processing Algorithm Based on JS']JS-divergence
    Song, Xin
    Qin, Shizhen
    Niu, Shaokai
    Wang, Yan
    ADVANCES IN NEURAL NETWORKS - ISNN 2019, PT I, 2019, 11554 : 444 - 453
  • [7] Distributed Big Data Clustering using MapReduce-based Fuzzy C-Medoids
    Sardar T.H.
    Ansari Z.
    Journal of The Institution of Engineers (India): Series B, 2022, 103 (01) : 73 - 82
  • [8] Hybrid Evolutionary Multiobjective Fuzzy C-Medoids Clustering of Categorical Data
    Mukhopadhyay, Anirban
    Maulik, Ujjwal
    Bandyopadhyay, Sanghamitra
    PROCEEDINGS OF THE 2013 IEEE WORKSHOP ON HYBRID INTELLIGENT MODELS AND APPLICATIONS (HIMA), 2013, : 7 - 12
  • [9] Fuzzy C-Medoids Clustering Based on Interval Type-2 Inituitionistic Fuzzy Sets
    Nguyen Anh Cuong
    Dinh Sinh Mai
    Do Viet Duc
    Dang Trong Hop
    Long Thanh Ngo
    Pham The Long
    2021 RIVF INTERNATIONAL CONFERENCE ON COMPUTING AND COMMUNICATION TECHNOLOGIES (RIVF 2021), 2021, : 262 - 266
  • [10] A Fast Weighted Fuzzy C-Medoids Clustering for Time Series Data Based on P-Splines
    Xu, Jiucheng
    Hou, Qinchen
    Qu, Kanglin
    Sun, Yuanhao
    Meng, Xiangru
    SENSORS, 2022, 22 (16)