Disorder-induced exceptional points and nodal lines in Dirac superconductors

被引:42
|
作者
Zyuzin, Alexander A. [1 ,2 ]
Simon, Pascal [3 ]
机构
[1] Aalto Univ, Dept Appl Phys, POB 15100, FI-00076 Aalto, Finland
[2] Ioffe Phys Tech Inst, St Petersburg 194021, Russia
[3] Univ Paris Saclay, Lab Phys Solides, CNRS, Univ Paris Sud, F-91405 Orsay, France
基金
芬兰科学院;
关键词
Compendex;
D O I
10.1103/PhysRevB.99.165145
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We consider the effect of disorder on the spectrum of quasiparticles in the point-node and nodal-line superconductors. Due to the anisotropic dispersion of quasiparticles disorder scattering may render the Hamiltonian describing these excitations non-Hermitian. Depending on the dimensionality of the system, we show that the nodes in the spectrum are replaced by Fermi arcs or Fermi areas bounded by exceptional points or exceptional lines, respectively. These features are illustrated by first considering a model of a proximity-induced superconductor in an anisotropic two-dimensional (2D) Dirac semimetal, where a Fermi arc in the gap bounded by exceptional points can be realized. We next show that the interplay between disorder and supercurrents can give rise to a 2D Fermi surface bounded by exceptional lines in three-dimensional (3D) nodal superconductors.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Disorder-induced exceptional and hybrid point rings in Weyl/Dirac semimetals
    Matsushita, Taiki
    Nagai, Yuki
    Fujimoto, Satoshi
    PHYSICAL REVIEW B, 2019, 100 (24)
  • [2] Exceptional points and lines and Dirac points and lines in magnetoactive cholesteric liquid crystals
    Gevorgyan, A. H.
    JOURNAL OF MOLECULAR LIQUIDS, 2023, 390
  • [3] Disorder-induced static antiferromagnetism in cuprate superconductors
    Andersen, Brian M.
    Hirschfeld, P. J.
    Kampf, Arno P.
    Schmid, Markus
    PHYSICAL REVIEW LETTERS, 2007, 99 (14)
  • [4] Magnetically induced tunable exceptional and Dirac points
    Gevorgyan, A. H.
    JOURNAL OF MOLECULAR LIQUIDS, 2024, 413
  • [5] Disorder-induced phase transition in Dirac systems beyond the linear approximation
    Krishtopenko, Sergey S.
    Antezza, Mauro
    Teppe, Frederic
    PHYSICAL REVIEW B, 2020, 101 (20)
  • [6] Dirac nodal surfaces and nodal lines in ZrSiS
    Fu, B. -B.
    Yi, C. -J.
    Zhang, T. -T.
    Caputo, M.
    Ma, J. -Z.
    Gao, X.
    Lv, B. Q.
    Kong, L. -Y.
    Huang, Y. -B.
    Richard, P.
    Shi, M.
    Strocov, V. N.
    Fang, C.
    Weng, H. -M.
    Shi, Y. -G.
    Qian, T.
    Ding, H.
    SCIENCE ADVANCES, 2019, 5 (05)
  • [7] Coexistence of multiple dirac nodal points and nodal lines in two-dimensional carbon nanotube arrays
    Mo, Shi-Cong
    Qiu, Xin-Yue
    Li, Guang-Ye
    Ning, Feng
    Wang, Zile
    Lin, Fang
    Chen, Shi-Zhang
    MATERIALS TODAY COMMUNICATIONS, 2023, 37
  • [8] Disorder-Induced Freezing of Dynamical Spin Fluctuations in Underdoped Cuprate Superconductors
    Andersen, Brian M.
    Graser, Siegfried
    Hirschfeld, P. J.
    PHYSICAL REVIEW LETTERS, 2010, 105 (14)
  • [9] Disorder-induced trapping and antitrapping of vortices in type-II superconductors
    Kopasov, A. A.
    Tsar'kov, I. M.
    Mel'nikov, A. S.
    PHYSICAL REVIEW B, 2023, 107 (17)
  • [10] Intrinsic and disorder-induced anisotropic vortex dynamics of high-temperature superconductors
    Yeh, NC
    Jiang, W
    Fu, CC
    Konczykowski, M
    Holtzberg, F
    PHYSICA C, 1997, 282 : 1943 - 1944