On the geometry of unitary involutions

被引:6
|
作者
Cossidente, Antonio [1 ]
Pavese, Francesco [1 ]
机构
[1] Univ Basilicata, Dipartimento Matemat Informat & Econ, I-85100 Potenza, Italy
关键词
Finite unitary group; Hermitian variety; Permutable polarities; Involution; CLASSICAL-GROUPS; PERFECT FIELDS;
D O I
10.1016/j.ffa.2015.06.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the geometry of involutions of the finite unitary group P Gamma U(n + 1, q(2)). The configurations of fixed singular points, fixed singular lines and fixed symplectic subgeometries in the case n = 3, are provided. This allows us to describe the geometry of linear involutions of PGO(-) (6, q). (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:14 / 28
页数:15
相关论文
共 50 条
  • [1] Hyperbolicity of unitary involutions
    Nikita A. Karpenko
    [J]. Science China Mathematics, 2012, 55 : 937 - 945
  • [2] Hyperbolicity of unitary involutions
    KARPENKO Nikita A.
    [J]. Science China Mathematics, 2012, 55 (05) : 937 - 945
  • [3] Hyperbolicity of unitary involutions
    Karpenko, Nikita A.
    [J]. SCIENCE CHINA-MATHEMATICS, 2012, 55 (05) : 937 - 945
  • [4] Isotropy of unitary involutions
    Karpenko, Nikita
    Zhykhovich, Maksim
    [J]. ACTA MATHEMATICA, 2013, 211 (02) : 227 - 253
  • [5] ON ABELIAN UNITARY INVOLUTIONS OF CROSSED PRODUCTS
    Yanchevskii, Vyacheslav I.
    [J]. DOKLADY NATSIONALNOI AKADEMII NAUK BELARUSI, 2024, 68 (01): : 15 - 17
  • [6] Totally decomposable symplectic and unitary involutions
    Andrew Dolphin
    [J]. manuscripta mathematica, 2017, 153 : 523 - 534
  • [7] Totally decomposable symplectic and unitary involutions
    Dolphin, Andrew
    [J]. MANUSCRIPTA MATHEMATICA, 2017, 153 (3-4) : 523 - 534
  • [8] On the geometry of linear involutions
    Pankov, M
    [J]. ADVANCES IN GEOMETRY, 2005, 5 (03) : 455 - 467
  • [9] Involutions and unitary subgroups in group algebras
    Balogh, Zsolt
    Creedon, Leo
    Gildea, Joe
    [J]. ACTA SCIENTIARUM MATHEMATICARUM, 2013, 79 (3-4): : 391 - 400
  • [10] Involutions and unitary subgroups in group algebras
    Zsolt Balogh
    Leo Creedon
    Joe Gildea
    [J]. Acta Scientiarum Mathematicarum, 2013, 79 (3-4): : 391 - 400