In situ measurement technologies on solid-state hydrogen storage materials: a review

被引:52
|
作者
Lin, Huai-Jun [1 ]
Li, Hai-Wen [2 ]
Shao, Huaiyu [3 ]
Lu, Yanshan [4 ]
Asano, Kohta [4 ]
机构
[1] Jinan Univ, Inst Adv Wear & Corros Resistant & Funct Mat, Guangzhou 510632, Peoples R China
[2] Kyushu Univ, Platform Inter Transdisciplinary Energy Res Q PIT, Fukuoka 8190395, Japan
[3] Univ Macau, Inst Appl Phys & Mat Engn IAPME, Taipa, Macao, Peoples R China
[4] Natl Inst Adv Ind Sci & Technol, Res Inst Energy Frontier, 16-1 Onogawa, Tsukuba, Ibaraki 3058569, Japan
基金
中国国家自然科学基金;
关键词
Hydrogen storage materials; Hydrogen storage mechanism; In situ measurement technologies; Metal hydrides; Complex hydrides; X-RAY-DIFFRACTION; LEARNING BASED PREDICTION; THERMAL-DECOMPOSITION; NEUTRON-DIFFRACTION; MAGNESIUM HYDRIDE; HIGH-PRESSURE; AMMONIA BORANE; ELECTRON-MICROSCOPY; SORPTION PROPERTIES; POWDER DIFFRACTION;
D O I
10.1016/j.mtener.2020.100463
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In an effort to realize a sustainable hydrogen economy, we are facing the demanding and challenging issue of providing compact and safe storage solutions for hydrogen in solid-state materials. Studies on the hydrogen storage properties of materials generally involve their phase structures, microstructures, thermal/structural stability, chemical compositions and bonding, which can be studied by ex situ experimental technologies. However, the experimental results obtained from ex situ measurements may be contaminated during sample handling, and some important intermediate phases are too metastable/unstable to be detected. To overcome the drawbacks, in situ studies are carried out, leading to a large number of unprecedented advantages. In this review, recent advances regarding in situ measurement technologies for solid-state hydrogen storage materials are summarized, mainly focusing on metal hydrides and complex hydrides. The working principles together with the devices used for the in situ methods are briefly introduced. Afterwards, both the classic and recent advances regarding the in situ measurement technologies for metal hydrides and complex hydrides are comprehensively summarized and reviewed. In addition to highlighting the tremendous merits of the in situ methods and the relevant achievements in the field of hydrogen storage materials, the remaining challenges and trends of the emerging research are also discussed. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Solid-state hydrogen storage materials
    Kalibek, M. R.
    Ospanova, A. D.
    Suleimenova, B.
    Soltan, R.
    Orazbek, T.
    Makhmet, A. M.
    Rafikova, Kh. S.
    Nuraje, N.
    DISCOVER NANO, 2024, 19 (01)
  • [2] The kinetics of lightweight solid-state hydrogen storage materials: A review
    Khafidz, Nurul Zafirah Abd. Khalim
    Yaakob, Zahira
    Lim, Kean Long
    Timmiati, Sharifah Najiha
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (30) : 13131 - 13151
  • [3] Solid-state Materials and Methods for Hydrogen Storage: A Critical Review
    Lim, Kean Long
    Kazemian, Hossein
    Yaakob, Zahira
    Daud, Wan Ramli Wan
    CHEMICAL ENGINEERING & TECHNOLOGY, 2010, 33 (02) : 213 - 226
  • [4] Recent Progress Using Solid-State Materials for Hydrogen Storage: A Short Review
    Lee, Seul-Yi
    Lee, Jong-Hoon
    Kim, Yeong-Hun
    Kim, Jong-Woo
    Lee, Kyu-Jae
    Park, Soo-Jin
    PROCESSES, 2022, 10 (02)
  • [5] Hydrogen Storage in Nickel Based Solid-State Materials
    Zvyagintseva, A., V
    Samofalova, A. S.
    VII INTERNATIONAL YOUNG RESEARCHERS' CONFERENCE - PHYSICS, TECHNOLOGY, INNOVATIONS (PTI-2020), 2020, 2313
  • [6] Hydrogen spillover in the context of hydrogen storage using solid-state materials
    Cheng, Hansong
    Chen, Liang
    Cooper, Alan C.
    Sha, Xianwei
    Pez, Guido P.
    ENERGY & ENVIRONMENTAL SCIENCE, 2008, 1 (03) : 338 - 354
  • [7] Silicon nanostructures for solid-state hydrogen storage: A review
    Muduli, Rama Chandra
    Kale, Paresh
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (04) : 1401 - 1439
  • [8] Nanoscale engineering of solid-state materials for boosting hydrogen storage
    Wang, Yunting
    Xue, Yudong
    Zuttel, Andreas
    CHEMICAL SOCIETY REVIEWS, 2024, 53 (02) : 972 - 1003
  • [9] Solid state hydrogen storage technologies
    Slattery, DK
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1996, 212 : 8 - SOCED
  • [10] An analytical review of recent advancements on solid-state hydrogen storage
    Abdechafik, El harrak
    Ousaleh, Hanane Ait
    Mehmood, Shahid
    Baba, Yousra Filali
    Buerger, Inga
    Linder, Marc
    Faik, Abdessamad
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 52 : 1182 - 1193