A Simple and Fast Hypervolume Indicator-Based Multiobjective Evolutionary Algorithm

被引:181
|
作者
Jiang, Siwei [1 ]
Zhang, Jie [2 ,3 ]
Ong, Yew-Soon [2 ,3 ]
Zhang, Allan N. [1 ,3 ]
Tan, Puay Siew [1 ,3 ]
机构
[1] Singapore Inst Mfg Technol, Singapore 638075, Singapore
[2] Nanyang Technol Univ, Sch Comp Engn, Singapore 639798, Singapore
[3] SIMTech NTU Joint Lab Complex Syst, Singapore 639798, Singapore
关键词
Hypervolume (HV); indicator-based; jMetal; multiobjective evolutionary algorithms (MOEAs); Pareto dominance-based; scalarizing function-based; GENETIC ALGORITHM; OPTIMIZATION; SELECTION; SCHEME;
D O I
10.1109/TCYB.2014.2367526
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
To find diversified solutions converging to true Pareto fronts (PFs), hypervolume (HV) indicator-based algorithms have been established as effective approaches in multiobjective evolutionary algorithms (MOEAs). However, the bottleneck of HV indicator-based MOEAs is the high time complexity for measuring the exact HV contributions of different solutions. To cope with this problem, in this paper, a simple and fast hypervolume indicator-based MOEA (FV-MOEA) is proposed to quickly update the exact HV contributions of different solutions. The core idea of FV-MOEA is that the HV contribution of a solution is only associated with partial solutions rather than the whole solution set. Thus, the time cost of FV-MOEA can be greatly reduced by deleting irrelevant solutions. Experimental studies on 44 benchmark multiobjective optimization problems with 2-5 objectives in platform jMetal demonstrate that FV-MOEA not only reports higher hypervolumes than the five classical MOEAs (nondominated sorting genetic algorithm II (NSGAII), strength Pareto evolutionary algorithm 2 (SPEA2), multiobjective evolutionary algorithm based on decomposition (MOEA/D), indicator-based evolutionary algorithm, and S-metric selection based evolutionary multiobjective optimization algorithm (SMS-EMOA)), but also obtains significant speedup compared to other HV indicator-based MOEAs.
引用
收藏
页码:2202 / 2213
页数:12
相关论文
共 50 条
  • [1] Improved Lebesgue Indicator-Based Evolutionary Algorithm: Reducing Hypervolume Computations
    Zapotecas-Martinez, Saul
    Garcia-Najera, Abel
    Menchaca-Mendez, Adriana
    [J]. MATHEMATICS, 2022, 10 (01)
  • [2] Adaptive Indicator-based Evolutionary Algorithm for Multiobjective Optimization Problems
    Jiang, Siwei
    Few, Liang
    Heng, Chen Kim
    Quoc Chinh Nguyen
    Ong, Yew-Soon
    Zhang, Allan NengSheng
    Tan, Puay Siew
    [J]. 2016 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2016, : 492 - 499
  • [3] Weighted Indicator-Based Evolutionary Algorithm for Multimodal Multiobjective Optimization
    Li, Wenhua
    Zhang, Tao
    Wang, Rui
    Ishibuchi, Hisao
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2021, 25 (06) : 1064 - 1078
  • [4] An Interactive Simple Indicator-Based Evolutionary Algorithm (I-SIBEA) for Multiobjective Optimization Problems
    Chugh, Tinkle
    Sindhya, Karthik
    Hakanen, Jussi
    Miettinen, Kaisa
    [J]. EVOLUTIONARY MULTI-CRITERION OPTIMIZATION, PT I, 2015, 9018 : 277 - 291
  • [5] Indicator-Based Evolutionary Algorithm for Solving Constrained Multiobjective Optimization Problems
    Yuan, Jiawei
    Liu, Hai-Lin
    Ong, Yew-Soon
    He, Zhaoshui
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2022, 26 (02) : 379 - 391
  • [6] Indicator-Based Constrained Multiobjective Evolutionary Algorithms
    Liu, Zhi-Zhong
    Wang, Yong
    Wang, Bing-Chuan
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2021, 51 (09): : 5414 - 5426
  • [7] A Scalable Indicator-Based Evolutionary Algorithm for Large-Scale Multiobjective Optimization
    Hong, Wenjing
    Tang, Ke
    Zhou, Aimin
    Ishibuchi, Hisao
    Yao, Xin
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2019, 23 (03) : 525 - 537
  • [8] Inferring Multiobjective Phylogenetic Hypotheses by Using a Parallel Indicator-Based Evolutionary Algorithm
    Santander-Jimenez, Sergio
    Vega-Rodriguez, Miguel A.
    [J]. THEORY AND PRACTICE OF NATURAL COMPUTING (TPNC 2014), 2014, 8890 : 205 - 217
  • [9] An Indicator-Based Multiobjective Evolutionary Algorithm With Reference Point Adaptation for Better Versatility
    Tian, Ye
    Cheng, Ran
    Zhang, Xingyi
    Cheng, Fan
    Jin, Yaochu
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2018, 22 (04) : 609 - 622
  • [10] A Survey on the Hypervolume Indicator in Evolutionary Multiobjective Optimization
    Shang, Ke
    Ishibuchi, Hisao
    He, Linjun
    Pang, Lie Meng
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2021, 25 (01) : 1 - 20